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Abstract 

 

 We investigate an infinitely repeated prisoners’ dilemma with imperfect monitoring and 

projects the possibility that the interlinkage of the players’ distinct activities enhances implicit 

collusion. We show a necessary and sufficient condition for the existence of generous tit-for-tat 

Nash equilibrium. Such an equilibrium, if it exists, is unique. This equilibrium achieves 

approximate efficiency when monitoring is almost perfect, where the discount factors are fixed. 
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1. Introduction 

  

It is a generally accepted view in economics that when an economic agent lacks 

means such as collaterals to incentivize his partner, he prefers interlinking the partner’s 

activity with his own, both of which are originally unrelated; the agent makes his 

activity contingent on the partner’s performance to establish an implicit collusion. This 

paper models this interlinkage as an infinitely repeated prisoners’ dilemma, where the 

players’ payoff functions have additively separable forms, thereby implying that there is 

no synergy between their activities, except in that they both happen to be carried out by 

the same pair of economic agents. We assume that imperfect monitoring exists: each 

player cannot directly observe the other player’s action, but imperfectly monitors it 

through a random signal. In this paper, we demonstrate the possibility that the collusive 

behavior of the players is sustained by Nash equilibrium. 

We focus on Nash equilibria that induce the players to follow generous tit-for-tat 

strategies; each player starts selecting a cooperative action. He selects it if he detects a 

good signal for the other player’s action, whereas he selects a defective action with a 

positive probability if he detects a bad signal. This strategy may be so generous that 

even after observing a bad signal, the player selects a cooperative action with a positive 

probability. We characterize a necessary and sufficient condition for the existence of a 

generous tit-for-tat Nash equilibrium, which, if it exists, is unique. This equilibrium 

approximately induces efficiency when monitoring is almost perfect. 

The generous tit-for-tat strategy has been studied in biology and is known to 

survive in computer-based tournaments. See Nowak and Sigmund (1992). The 

formulation of this strategy is so simple that several authors including Takahashi (2007) 

have used a similar equilibrium in related literature. Since there is no synergy between 

the activities, the generous tit-for-tat Nash equilibrium must be belief-free, whereby 

each player is indifferent to an action choice at all times. This property is the driving 

force behind our characterization. 

Since each player’s generous tit-for-tat strategy does not depend on the signal for 

his own action, the Nash equilibrium property does not depend on whether the signals 

are public or private; approximate efficiency is achievable irrespective of whether 
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monitoring is public or pricate. Significantly, the players’ discount factors are not 

required to approach unity. This is in contrast with previous works by Ely and Välimäki 

(2002), Piccione (2002), and Matsushima (2004), who assumed that the players are as 

patient as possible.3 

Matsushima (1991) showed that when monitoring is private and satisfies 

conditional independence, it is impossible for the collusion to be sustained by a pure 

Nash equilibrium strategy that is independent of irrelevant information. In contrast, this 

paper employs generous tit-for-tat strategies that are not pure, do not satisfy the 

independence of irrelevant information, and do not assume conditional independence. 

By assuming symmetry, we show that whenever a generous tit-for-tat Nash 

equilibrium does not exist, no pure Nash equilibrium other than the repetition of the 

defective action choices exists quite generally; it might be impossible for the players to 

collude as long as they do not utilize more complicated mixed strategies than generous 

tit-for-tat strategies. 

This paper proceeds as follows: Section 2 describes the model; Section 3 illustrates 

the characterization; and Section 4 discusses approximate efficiency. 

 

2. The Model 

 

We consider a long-run relationship between players 1 and 2 in the discrete and 

infinite time horizon. The component game is denoted by {1,2}( , )i i iA u  , where iA  

denotes the set of all actions for each player {1,2}i , i ia A , 1 2A A A  , 

1 2( , )a a a A  , :iu A R , and ( )iu a  implies the payoff for player i  induced by 

a A . We assume that there is no synergy between their activities; each player 'i s  

payoff has an additively separable form: 

   ( ) ( ) ( )i i i i ju a v a w a   for all a A . 

 Two random signals 1 1   and 2 2   occur after their action choices are 

made, where i  denotes the set of possible i , 1 2( , )   , and 1 2    . A 

                                                 
3 Sekiguchi (1997) is an exception. For general surveys on repeated games, see Mailath and 
Samuelson (2006), for instance. 
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signal profile   is randomly determined according to a conditional probability 

function ( | ) :f a R  . Let ( | ) ( | )
j j

i if a f a


 


  , where j i . On the basis of 

a no-synergy condition, we assume that ( | )i if a  is independent of ja ; we denote 

( | )i i if a  instead of ( | )i if a  and use i i   to denote the signal for player i s  

action. At every period {1,2,...}t , each player i  cannot directly observe the other 

player’s action ( )j ja t A . Instead, he observes ( )j jt   through which he 

imperfectly monitors it. Let 1( ) ( ( ))th t     denote the signal history up to period t . 

Let { ( ) | 0,1,...}H h t t  , where (0)h  implies null history. 

 We assume that each player i  cannot observe ( )i jw a ; we regard ( )i jw a  as the 

expected value of payoff induced by the signal for the opponent j ’s action *( )i jw  , 

i.e., *( ) ( ) ( | )
j j

i j i j j j jw a w f a


 


  . 

 The formulation of repeated game with imperfect monitoring in the above manner 

assumes that monitoring is public in that each player can observe both signals 1  and 

2 . However, the argument of this paper will not depend on whether each player can 

observe the signal for his (or her) own action, i.e., whether monitoring is public or 

private. 

Let : [0,1]i iA   denote a mixed action for player i . Let i  denote the set of 

all mixed actions for player i . Let (0,1)i   denote the discount factor for player i , 

where we permit that the discount factors of both players could be different. Player i s  

strategy is defined as :i iH  , where he makes action choice ( )ia t  at each period 

t  according to ( ( 1))i ih t   . Let i  denote the set of all strategies for player i , 

1 2( , )   , and 1 2    . The payoff for player i  induced by    is given by 

1

1

( ) (1 ) [ ( ( )) | ]i i i iU E u a



    






   , 

where [ | ]E   denotes the expectation operator. A strategy profile    is said to be 

a Nash equilibrium if 
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   ( ) ( , )i i i jU U    for all {1,2}i  and all i i  . 

Let us specify the repeated prisoners’ dilemma model: for each {1,2}i , 

{ , }i i iA c d , {0,1}i  , (1| )i i if c p , (1| )i i if d q , 

   ( )i i iv c X  , ( ) 0i iv d  , ( )i j iw c Y , and ( ) 0i jw d  , 

where 0 1i iq p   , and 

(1)   0i iY X  . 

We call ic  and id  the cooperative action and defective action respectively. It costs 

player i  iX  for his cooperative action choice, but this choice gives the other player 

j i  the benefit jY . It is important to note that we do not assume that jY  is greater 

than iX ; the cooperative action choice does not necessarily improve welfare. However, 

inequality (1) guarantees that payoff vector 1 1 2 2( , )Y X Y X   induced by 1 2( , )c c  is 

efficient and better than payoff vector (0,0)  that is induced by 1 2( , )d d . We call 1 and 

0 the good signal and bad signal respectively. Inequality i ip q  implies that the 

probability of 1i   is greater when player i  makes the cooperative action choice 

than otherwise. 

 A strategy i i   for each player {1, 2}i  is said to be generous tit-for-tat if 

[0,1]is   such that for every 1t   and every ( 1)h t H   

   ( ( 1))( ) 1i ih t c    if either ( 1) 1j t    or 1t  , 

and 

   ( ( 1))( )i i ih t c s    if ( 1) 0j t   . 

We denote a generous tit-for-tat strategy by is  for player i ; he certainly selects ic  at 

period 1. At every period 2t  , he selects ic  if he observes ( 1) 1j t    at the 

previous period 1t  . When he detects ( 1) 0j t    at the previous period, he selects 

id  with probability 1 is ; he selects ic  with probability is  even after detecting the 

bad signal. Let 2
1 2( , ) [0,1]s s s  . 
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3. Characterization 

 

 The following theorem shows a necessary and sufficient condition for the existence 

of generous tit-for-tat Nash equilibrium, which, if it exists, is unique. 

 

Theorem 1: A generous tit-for-tat strategy profile s  is a Nash equilibrium if and only 

if for each {1, 2}i , 

(2)   
( )

i
i

i i i

X

p q Y
 


, and 

(3)   1
( )

i
j

i i i i

X
s

p q Y
 


. 

The payoff for each player i  induced by s  is given by 

(4)   
1

( ) i
i i i

i i

q
U s Y X

p q


 


. 

 

Proof: Selecting ic  costs player i  iX  at the current period, whereas he gains iY  

with probability (1 )i i jp p s   and nothing with probability (1 )(1 )i jp s   from the 

other player’s response at the next period. This holds irrespective of period and history, 

because there is no synergy. He is incentivized to select both ic  and id  at the same 

time; indifference between these action choices must be a necessary and sufficient 

condition: 

   { (1 ) } { (1 ) }i i i i i j i i i i jX Y p p s Y q q s        , 

which is equivalent to 1
( )

i

i i i
j

i

X
s

p q Y
 


(equality (3)). Since 1js  , it follows that 

1
( )

i

i ii i

X

p q Y



(inequality (2)) must hold. Since player i  is indifferent to the action 

choice at all times, we can calculate his payoff by letting him select ic  at all times and 

the other player follow js : 

   
{ (1 ) }

( ) (1 )[ ]
1

i i i i j
i i i i

i

Y p p s
U s Y X





 

   

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[ (1 ){1 }]

( )
(1 )[ ]

1

i
i i i i

i i i i
i i i

i

X
Y p p

p q Y
Y X






  


   
  

   

1 i
i i

i i

q
Y X

p q


 


, 

which is equality (4) 

Q.E.D. 

 

Note that the players’ payoffs are determined independent of their discount factors, 

while each player 'i s  generosity—the probability is  that he selects ic  even after 

detecting the bad signal—depends on the other player’s discount factor. The more 

patient one player is, the more generous is the other one. We do not require j iY X ; a 

player prefers interlinking the other player’s activity with his activity that may not 

contribute to the welfare alone but is easy to monitor. 

The Nash equilibrium property does not depend on whether the signals are public 

or private. We can prove the same statement as Theorem 1, even if we restrict attentions 

to strategies for each player that depend only on the histories of his (or her) own actions 

and the signals for the other player’s action, i.e., even if monitoring is assumed to be 

private. Each player i  does not need to know whether the signal for his own action is 

good or bad. 

 

4. Approximate Efficiency 

 

The following theorem presents a sufficient condition under which the generous 

tit-for-tat Nash equilibrium approximately induces efficiency when monitoring is almost 

perfect. 

 

Theorem 2: Suppose that 

(5)   
(1 )

i
i

i i

X

q Y
 


 for each {1, 2}i  

and ip  is sufficiently close to unity for each {1, 2}i . Then, a generous tit-for-tat 
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Nash equilibrium that approximately induces 1 1 2 2( , )Y X Y X   exists. 

 

Proof: Inequality (5), along with the supposition that ip  is close to unity, implies 

inequality (2). Theorem 1 implies that the strategy profile specified by (3) is a Nash 

equilibrium. Since ip  is close to unity, 
1 i

i i
i i

q
Y X

p q





 approximates i iY X . 

Q.E.D. 

 

Theorem 2 implies that the payoff vector induced by the generous tit-for-tat Nash 

equilibrium converges in efficiency as 1p  and 2p  approach unity. This convergence 

holds for any combination of their discount factors satisfying inequalities (5). Moreover, 

this convergence holds even if monitoring is private. 

Let us assume that the model is symmetric: 

1 2X X , 1 2Y Y , 1 2p p , 1 2q q , and 1 2  . 

We omit the subscripts (e.g., iX X ). The following proposition shows that inequality 

(5) is almost necessary for the existence of pure strategy Nash equilibrium that is not a 

repetition of the defective action choices, provided iq  is close to zero. 

 

Proposition 3: If the model is symmetric and 

(6)   
X

Y
  , 

then, the repetition of the defective action choices is the only pure strategy Nash 

equilibrium. 

 

Proof: Consider an arbitrary pure strategy Nash equilibrium  . Suppose that there 

exist 1t   and ( 1)h t H   such that 

   ( ( 1))( ) 1i ih t c    for each {1, 2}i . 

Let iB  denote the continuation payoff at period 1t   associated with ( 1)h t   

induced by  . Note that the future punishment for the selection of id  instead of ic  

is at most iB  minus the mini-max payoff (zero), i.e., is at most iB . Hence, the 
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incentive constraints imply that for each {1,2}i , 

(7)   (1 ) iX B   . 

Since 1 2 2( )B B Y X   , it follows from (7) that 
X

Y
  . This contradicts (6). 

 Suppose that there exists {1, 2}i , 1t  , and ( 1)h t H   such that 

   ( ( 1))( ) 1i ih t c   . 

Player 'i s  incentive constraint implies (7). From the above argument it follows that 

the players never select 1 2( , )c c . Hence, the summation of their continuation payoffs is 

at most Y X . Since the other player’s payoff must be at least zero, it follows that 

iB Y X  , which along with (7) implies 
X

Y
  . This contradicts (6). 

Q.E.D. 

 

 If ip  and 1 iq  are both close to unity, then inequality (6) mostly contradicts 

inequality (2). Hence, if monitoring is almost perfect, we can hardly expect the presence 

of collusive pure strategy Nash equilibrium when no generous tit-for-tat Nash 

equilibrium exists. 
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