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Akihiko Takahashit and Toshihiro Yamadat
September 2, 2013

Abstract

This paper proposes a new closed-form approximation scheme for the representation of the forward-backward
stochastic differential equations (FBSDEs) of Ma and Zhang (2002). In particular, we obtain an error estimate
for the scheme applying Malliavin calculus method of Kunitomo and Takahashi (2001, 2003), Kusuoka (2003),
Takahashi and Yamada (2012) for the forward SDEs combined with the Picard iteration scheme for the BSDEs.
We also show numerical examples for pricing options with counterparty risk under the local and stochastic volatility
models, where the credit value adjustment (CVA) is taken into account.

Keywords: Forward-Backward Stochastic Differential Equations (FBSDEs), Asymptotic expansion, Malliavin
calculus, CVA

1 Introduction

In this paper, we propose a new asymptotic expansion scheme with its error estimate for the forward-backward
stochastic differential equations (FBSDEs). As an application, we derive recursive expansion formulas for the option
price with CVA under the local and stochastic volatility models and show numerical examples.

Bismut (1973) introduced the backward stochastic differential equations (BSDEs) for the linear case, and Par-
doux and Peng (1990) initiated the study for the non-linear BSDEs. Since then, in addition to its theoretical
researches, substantial numbers of numerical schemes for the solutions to the BSDEs have been proposed. The one
of the main reasons is that the BSDEs are closely related to various valuation problems in finance (e.g. pricing
securities under asymmetric/imperfect collateralization, optimal portfolio and indifference pricing issues in incom-
plete and/or constrained markets). They also become particularly useful for modeling credit risks (e.g. Duffie and
Huang (1996), Crépey (2012a,b), Fujii and Takahashi (2010, 2011)) as well as for the study of recursive utilities
(e.g. Duffie and Epstein (1992), Nakamura et al. (2009) ). Their financial applications are discussed in details for
example, El Karoui et al. (1997), Ma and Yong (2000), a recent book edited by Carmona (2009), Crépey (2012a,b),
and references therein.

As for numerical methods, Ma et al. (1994) showed the four-step scheme for the BSDEs and its numerical
method has been proposed in Douglas et al. (1996). Bouchard and Touzi (2004) has developed a discrete-time
approximation for Monte-Carlo simulation based on Malliavin calculus. Also, a least-square Monte-Carlo method
for the BSDEs has been proposed by Gobet et al. (2005). Moreover, Bender and Denk (2007) has presented a
Picard-type approximation, and showed its theoretical and numerical validity. Recently, Gobet and Labart (2010)
and Briand and Labart (2012) have extended the Monte-Carlo scheme for the BSDEs using the Picard-type iteration.

Although a large number of finite difference methods and simulation-based methods were proposed for numerical
approximations of the solutions to BSDEs, their closed form approximation methods have been rarely discussed.
Fujii and Takahashi (2012a,b,c) are exceptions, where they presented a simple analytical approximation with pertur-
bation or/and interacting particle scheme for non-linear fully coupled FBSDEs without error estimate. Especially,
Fujii and Takahashi (2012b) derived an approximation formula for dynamic optimal portfolio in an incomplete
market with stochastic volatility, and confirmed its validity through numerical experiment.

This paper presents a new closed-form approximation method for the forward-backward stochastic differential
equations based on a Picard-type iteration and an asymptotic expansion in Malliavin calculus. Also, our method
can be regarded as an extension of the representation theorem by Ma and Zhang (2002) and the approximation
method in Takahashi and Yamada (2012). Roughly speaking, considering a perturbed forward SDE X°, ¢ € (0, 1]
and an associated backward SDE (Y*, Z¢), we have the following recursive asymptotic expansion around some
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help in numerical computations in Section 6.
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non-degenerate gaussian model X°: i.e., for k>0, N > 1
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where YR Nohe = ok N (g X007) and ZoFNET = (VuoFNo) (s, X20®). Here, the processes w0, and Ny,
i = 1,---,N are the Malliavin weights and in particular, N&t corresponds to the weight appeared in the Ma-
Zhang’s representation theorem. Moreover, applying properties of so called Kusuoka-Stroock functions introduced
by Kusuoka (2003), we obtain an error estimate of our scheme to show its mathematical validity.

The organization of this paper is as follows: The next section describes an idea for our method using a well-
known example. Section 3 generalizes the idea and summarizes our algorithm in a general setting. After Section
4 provides the notations and basic results used in later sections, Section 5 presents our main result with its proof.
Applying our scheme, Section 6 provides a simple numerical example for pricing options with counterparty risk
under the local and stochastic volatility model. Section 7 concludes.

2 DMotivated Example

In this section, we show an idea for our approximation method using the BSDE appearing in a well-known example
of mathematical finance, so called “hedging claims with higher interest rate for borrowing’ (Cvitanic and Karatzas
(1993), El Karoui et al. (1997)).

Specifically, let us consider the following FBSDE examined by Gobet et al. (2005), Bender and Denk (2007)
and Fujii and Takahashi (2012a):

dS; = pSidt+ oS dWe, (3)
So = so,

dYe = rYidt — f(Ya, Z0)dt + ZodWs, (4)
Yr = g¢(Sr)=max(Sr — K1,0) — 2max(St — K>,0), (5)

where

fly,2) = (R —r)max (E—y,0>— ('uir> z. (6)
o o
When the borrowing rate R is higher than the lending rate r (i.e. R > r), the solution to the FBSDE above,
Y = {Y: : 0 <t < T} represents the value process of a self-financing hedging strategy for a target payoff given by
g(ST), and Z stands for the hedging strategy where Z; /o is the amount invested at time ¢ in the risky asset whose
price process is given by S.} In particular, we note that the specification of g(ST) as an option spread creates both
lending and borrowing in the strategy. Here, r, R, y and o are assumed to be positive constants.
Y ={Y;:0 <t < T} is represented as the following non-linear expectation:

T
Y, = e "T YRGS F]+e " TYVE U f(Yu,Zu)duE},
t

where F; is the filtration generated by W, i.e., Fx = 0(Ws; s < t) . Next, define u as

T
u(t,s) =Y =e " TVE [g(Sy)] +e " TVE [/ fvbs, Zf;s)du] .
t

Then, using this u, Z = {Z; : 0 < ¢ < T} is obtained as follows:

9

Zt = O'Stas

u(t, St)

IThe problem is considered under the physical measure and (%) represents the market price of risk.



Moreover, applying a representation result by Ma and Zhang (2002), one has

T
Zy = e TT0) {E[g(s;S)N;S] + E[/ fYhe, ZZ’S)NE’Sdu]} ,
t

where N** = {N}*®:0 <t < s <T} is the Malliavin weight process given S; = s:

R /g‘l(Si’s)gsﬁ’deT.
u—t J, 0s

Next, let us show an example of a closed form approximation for the BSDE using the Picard-type iteration. In
the first place, define u°(t, s) as

u(ts) = e "TTVE[g(S7%)] . (7)
Then, the Malliavin representation for the Delta under Black-Scholes model (3) is well-known, that is given by

) 1 [T
0 __—r(T-t) t,s
—u (t,s) = E S27)=—— —dW, | . 8
65“(’8) © |:g(T)T—t/t so u:| (8)
See Fournié et al (1999) for the details.
In this simple model, we are capable of its evaluation through one dimensional integrations. That is, given
log S = x, set the density of log St under (3) as p(¢, T, z,y):

1 (y—a—pw(T —t)+ 20*(T —t))*
p(t. Tz, y) = m exp ( 202(T —t) > '

(9)

Then, we have

WOt s) = f““”/gwmmnmw@, (10)
R
and
guo(t,S) = e_T(T_t)/g(ey)w(tmy)p(t,T,x,y)dy,
& R

where the finite dimensional Malliavin weight w(t, z,y) is given by

T 12
1 | (y—a— (T —8) + 13T - 1)
t —E —dWu| X7y =y| = . 1
’LU(,$,y) |:T—t/t so | T-t =Y 610'2(T—t) ( )
Hence, we get the 0-th iteration (Y°,Z%) = {(Y?,Z2?):0<t < T} as
thO = uo(t7 St)a (12)
0
z? = oSt%uo(t, Sy).
Next, using the function u°(t, s), we define u'(t, s) as
B 9
) = e+ [ (0000 S0 v e, (13)
t JR
where x = log s. Then, applying the same weight w as (11), we are able to evaluate %ul (t,s):
8 1 x 8 0 x
il = = 14
Lulery = Tt e) (14)
g 8
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Therefore, the first iteration is given by
Yio= ul(t,8), (15)
0
Ztl = aStgul(t,St).
Thus, for k > 1 let us recursively define u**1(t,s) = u*T!(t, %) (where z = log s) as
g )
uF Tt e") = WPt e") + e (T / / f (Uk(% e’), Ueyauk(% ey)) p(t,v, z,y)dydv, (16)
¢t Jr



which leads to the evaluation of %uk“(t, s) with the same weight w as (11):
0 k+1 T _ 0 0 x
A (t,e”) = 23 (t,e”) (17)
3 d
re @0 [0 ] (e o0 Bt 0wl ppttov e, (9
t JR
Hence, the k + 1-iteration is obtained by
A S (- (19)
0
Zerl = OSt%uk+1(t, St)

Finally, applying the same parameters as in an example of Gobet et al. (2005) so that So = 100, o = 0.2,
u=0.05r=0.01, R=0.06, T = 0.25, K1 = 95, K2 = 105, let us show a numerical comparison of this iterated
approximation scheme with their result.

e Benchmark value of Yy by Gobet et al. (2005): 2.95 with standard deviation 0.01, where they have tried
various sets of basis functions in their regression-based Monte Carlo simulation to achieve this value.

e Qur approximation values: O-th iteration = 2.7864, the first iteration = 2.9671, and the second itera-
tion = 2.9531.

It is observed that our approximation values become closer to the benchmark one as the more iterations are
implemented. We also remark that a perturbed approximation method of Fujii and Takahashi (2012&)2 has provided
2.7863, 2.968, and 2.953 for the O-th, the first and the second order approximations, respectively, which are very
close to our result. In the following sections, we extend our method in a more general setting.

3 Summary of Algorithm of Closed-form Approximation

In the example of section 2, we are able to make use of an explicit Gaussian density since the forward process is
given by Black-Scholes model (3). However, when we consider a more complex forward process, the explicit density
is no longer obtained in general. For the case of general forward processes on a probability space (2, F, P), let us
introduce a perturbation parameter ¢ € (0, 1] as

dX§ = p(t, X{)dt + eo(t, X{)dW,.

Then, for € > 0 we are able to derive a semi-closed form density applying an asymptotic expansion around some
simple model X%t’z under a suitable condition, that is, for N € N,

N
P Ty = (LT ay)+ Y Bl | X0 = ylp’(t, T,z y), (20)
i=1
with the density po(t, T,z,y) of X%t’z and some Malliavin weights W?”}’I, i=1,---,N. For the following general
BSDE;

T T
Ve o= o)+ [ e X zias— [ ziaw. (21)
t t
we define the function u as

T
u(t,z) =Y, = Elg(X3"")| + E U fs, X20" yobe, Zj’t’”)ds] : (22)
t

s,k,N)

We approximate u° using a sequence (u  in the following way.

1. «*%Y(t,2): An approximation of the 0-th iteration

Here, the 0-th iteration is defined by
us(t,x) = E[g(X3"")]| + E [ftT f(s, X55*,0, O)ds}. Then,

}/te,t,x — us,O(t7 x)
~ uE’O’N(t7 x)
N
= Elg(Xp"))+ > e Blg(Xg")rly

=1

2See their paper for the details.



T N T
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N
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Note that the Malliavin weights 7'('25, i=1,---,N are same as in (20).

. u®YN(t,z): An approximation of the first iteration
Here, the first iteration is defined by

usl(t,x) = E[g(X5"")] + E [ftT f(s, XE0T 4=0(s, X20T) (Vu®00) (s, Xj’t’x))ds]
Firstly, define

T
Wt (tx) = Elg(X3")+E [/ F(s, X500 u® "N (5, X507, (Vau® "N o) (s, Xj’t’””))ds} .
¢
451 (t, ) is an approximation of u®!(t,z):
ul(tx) o~ A (t ).
We can not compute 4" (¢, ) explicitly because the density p°(t, T, z,y) of X;’t’z has no closed-form expres-

sion. Then, using the approximation of the density in (20) again, we expand 4 (¢, x) with respect to € as
follows:

@t (¢, x)

T
Blg(Xz")]+E [/ Fls, X307, um0N (5, X307), (quE’O’NO)(&X?’t’m))dS} (23)
t

6,1,N(

~ wu t,x)

N
= Elg(X3")]+ > ' Elg(Xp" "))y

=1
T
+B [ / Fls, XU u=ON (5, X007, (ma’”o)(s,Xs’t@))ds}
t

N T
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N
= / gy (t, T, x,y)dy + ZE/ 9B p | X" =yl (6, T, z,y)dy
R? i=1 R

T
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t
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t

(25)
Since Y;1"" = uS1(t,z), we get an approximation using (24)
Kfalat@ ~ us,l,N(t,x)
N
= Elg(Xp""))+ ) &' Elg(X3" " )my
i=1
T —
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Here, YEONte = yo0N (5, F042) and ZONte = (7,450N g)(s, X0H2).



3. We iterate the procedure above.
Then, in general we obtain the following numerical approximation for u(¢,z) = Yf’t’z.

4. Numerical approximation for u®(t,z) = Y;>""

}/—te,t,z — ’U/S(t, ZE)

~ uPN(t,2)

N
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i=1
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Here, }/Ss,kfl,N,t,z — ue,kfl,N(&X;),t,z) and Z:,kfl,N,t,z — (Vzus’kfl’Na)(s,Xg’t’”).

We prove this conjecture rigorously using Malliavin calculus in Section 5.

4 Notations and Basic Results

Hereafter, we use the following notations.
d a )
e For x € R ’vx:(TM""’E)'
e C(T,x) stands for a generic non-negative, non-decreacing and finite function of at most polynomial growth in
z depending on 7" > 0.

e CF(RY) is the space of the k-times continuously differential functions on R? such that the partial derivatives
are uniformly bounded.

e (Q, H, P) is the Wiener space. H is the Cameron-Martin subspace.

e D”*P is the space of the k-times Malliavin differentiable LP-Wiener functionals for k € N,p € [1,00). We
denote || - ||pr.» as the norm of D*?.

e D> is the space of the smooth Wiener functionals in the sense of Malliavin, that is, D> = Ny, ,D*?.
e D™ is the space of the Watanabe distributions (the dual of D).
o Wesay F° = O(c") in D*P as ¢ | 0 if F* € D™ for all ¢ € (0, 1] and

limsup || F®||pk.» /€™ < o0, (27)
£l0

where n is some real constant.

Let D be the Malliavin derivative operator (a densely defined, closed linear operator from D2 to L*(Q x [0, T]))
and § be its adjoint operator (so-called the Skorohod integral) § : Dom(8) — L*(Q;R): for all F € D*? and
u € Dom(9),

E[F§(u)] = E [ / ’ DtFutdt} , (28)

where Dom(d) = {u cL*(Qx[0,T)): ‘E UOT DtFutdt}
rohod integral has the following property. For the proof, see Nualart (2006), for instance.

Lemma 4.1 Suppose that F € D2, For any u € Dom(8) such that Fu € L*([0,T] x Q), one has Fu € Dom(6),
and 1t holds that

< C||F|l2,VF € DLQ}. It is well-known that the Sko-

T T
5(Fu) = F/ Utth — / DtFutdt. (29)
0 0



In our algorithm summarized in section 3, we have to compute the asymptotic expansion ©*~ recursively. From

a numerical viewpoint, the stability of integration must be checked. In particular, the asymptotic behavior of our
approximation is crucial when ¢ 1 T'. Hence, we introduce the Kusuoka-Stroock functions (Kusuoka (2003)) which
help to clarify the order of a Wiener functional with respect to time ¢.

Definition 4.1 (Kusuoka-Stroock functions) Givenr € R andn € N, we denote by KT (n) the set of functions
G : (0,T] x RY = D™ satisfying the followings:

1. G(t,-) is n-times continuously differentiable and [0°G/dx®] is continuous in (t,x) € (0,T] x R* a.s. for any
multi-index o of the elements of {1,---,d} with length |a| < n.

2. Forallk <n—lal, p € [1,00),

/2 < co. (30)

t
—l w)HW

sup
t€(0,T),z€R4

The above definition corresponds to Definition 2.1 of Crisan and Delarue (2012) of modified version of Kusuoka
(2003). We write K2 for K7 (c0).

Lemma 4.2 [Properties of Kusuoka-Stroock functions] The followings hold.
1. Suppose G € KT (n) where r > 0. Then, fori=1,---,d,

/ ‘ G(s,z)dW! € K} 1(n) and / . G(s,z)ds € K} a(n). (31)

0 0
2. IfGiEICTTi(m),i=17~~,N, then

N N
H Gi € ICZWI_F,“MN (miin n;) and Z Gi € K,j;nni . (rniin ng). (32)

@ i=1

Proof. See Lemma 5.1.2 of Nee (2010) for instance. O
Let (X¢)¢e[o,7] be the solution to the following stochastic differential equation:

N
Vo(XP)dt+ > Vi(X7)dWir, (33)

=1

axy

Xo = =x€ Rd,

where each Vi, i = 0,1,---,N is bounded and belongs to C{°(R% R?). We assume that the UFG condition
of Kusuoka (2003) holds. See p. 262 of Kusuoka (2003) for the definition of the UFG condition. Next, we
summarize the Malliavin’s integration by parts formula using Kusuoka-Stroock functions. For any multi-index

a®) .= (a1, --,on) € {1,---,d}*, k > 1, we denote by 0,,x) the partial derivative Fos o

L 0%y,

Proposition 4.1 Let G : (0,T]xR* — D> = D>*°(R) be an element of KX and let f be a function that belongs to
the space C5°(RY). Then for any multi-index a® e {1,---,d}*, k > 1, there exists H, ) (X7,G(t,2)) € ICTT7|a(k>\
such that

E 0,00 F(XP)G(t,2)] = B [f(XF)H,yo0 (XF, Gt 7)), (34)
with
1H o0 (XF, G(t,2)) | 2o < C(T, @)t"12 072, (35)

where H, ) (X{, G(t,x)) is recursively given by

N
Hey (X7, G(t,x)) 5 (Z Gy’ DX?]’) : (36)

j=1

H,u (X7, G(t,x)) = Hey(XE, Hyw-n (X, G(t, 1)), (37)

and a positive constant C(T, x) is depending on T and x. Here, ('yj](.‘ )i<i,j<n 1S the inverse matriz of the Malliavin
covariance of X[ .

Proof. Apply Corollary 3.7 of Kusuoka-Stroock (1984) and Lemma 8-(3) of Kusuoka (2003) with Proposition 2.1.4
of Nualart (2006). O



5 Asymptotic Expansion for FBSDEs
5.1 Forward-Backward SDE

Let (Q, F, P) be a complete probability space on which a d-dimensional Brownian motion W = (W' ..., W) is
defined. Let (F;)¢>0 be the natural filtration generated by W, augmented by the P-null sets of . Consider the

following d-dimensional forward stochastic differential equation X; = (X¢,--- ,Xfl);
d
dX{ = (LX)t + Y oj(t, X)dW), i=1,--.d, (38)
j=1

where b: [0,7] x R* — R and o : [0,7T] x R* — R**,
Next, let us introduce a backward stochastic differential equation Y:

T T
Y, = g(XT)+/ f(s,Xs,YS,ZS)ds—/ ZdWs, (39)
¢ ¢

where g : R - Rand f:[0,T] x R x R x R - R.
We put some conditions below on the above forward-backward SDE.

Assumption 5.1
1. The coefficients of forward process b, o are bounded Borel functions and Cy° in .

2. There exist constants a; > 0, i = 1,2 such that for any vector & in R and any (t,z) € [0,T] x RY,

d
i€l < Y loo" i (t,0)&E; < anlél’. (40)

3,j=1

3. The driver f: [0,T] x R* x R x R¥*? — R is continuous in t and uniformly Lipschitz continuous in x,vy, z
with constant Cr, i.e. for allt € [0,T], (z1,y1,21), (T2, y2,22) € R? x R x R¥*¢,

|f(t7iU1,y1,Z]_) - f(t7:c2,y2,z2)| < CL(|$1 - $2| + |y1 - y2| + |Zl - ZQ')' (41)
Also, we assume
Lf(t 2y, 2) < Co(l+ |z] + [y| + |z]). (42)

for (t,z,y,2) € [0,T] x R x R x R4,
4. g is Lipschitz continuous function with constant Cr, on R? and |g(x)| < CL(1 + |z|) for z € R?.

5.2 Small Diffusion Expansion

In this subsection, we deal with a small diffusion expansion which corresponds to the framework in Kunitomo
and Takahashi (2001, 2003) and derive a general approximation formula for FBSDEs. Consider the following

d-dimensional perturbed forward stochastic differential equation X§ = (X5, ---, X%):
d
AXP© = B X)dt ey oj(t, XD)AW], =1, d, (43)
j=1
where b: [0,7] x R = R%, ¢ : [0,7] x R = R**? and ¢ € (0,1].
We introduce the associated BSDE as follows:
T T
Ve o= i)+ [ s xn v Zias - [ ziaw. (44)
t t

where g : R - R and f: [0,7] x R x R x R™™¢ — R. We put Assumption 5.1. Remark that for £ = 0, the
forward SDE X? degenerates, then BSDE Yy is well-defined for € € (0, 1].

Let (Y=F), be a sequence of linear BSDEs :
T T
v = g+ [ e x00s [zzaw,
t t

T T
Yol = g(X§)+ / Fs, X5, Y20, 250 ds — / Z2dws,
t t

e,k+1
Y,

T T
9(X7) + / fls, XS, Y%, 257 )ds — / zZ2Maw,, k> o.
t t



Tt is well-known that this sequence converges to non-linear BSDE Y® under a suitable norm:
YoF 5 Ve as k— o0.
For ¢ € (0,1], we define u® : [0,7] x R* — R as
T
u(tz) =Y, = Blg(Xph)] + B [ / CP G Al Z?”)ds] : (45)
t
where (X Yeh® 70%) denote the adapted solutions to the SDE’s (38) and (44), restricted to [t,T] with

X5 = g, a.s.. Under Assumption 5.1, the representation of Ma and Zhang (2002) holds, and for € € (0,1] we
define V,uo on [0,T] x R? as

(Vouto)(t,z) = (Vuu'(t,x))eo(t,z)
T
= E[g(Xf’t’”)N;?’t]W(tw)+E[/ f(s,Xi’t”“,Kg’t’“,Z?t"")N?tdS] eo(t,x), (46)
t
where
e,t 1 “ —1 e,t,x e,t,x
= X0 X2 . 4
e g [ e (a7)

Also, under Assumption 5.1, remark that the solution to SDE X2 (0 < t < s < T) has a smooth density
p°(t,s,x,y) and then we define a sequence (u®", V,u**0)1>0.

T
u Ot ) = Elg(X5 ")+ FE |:/ f(s, X550, O)ds]

T
= /g(y)ps(t,T,m,y)dy+/ f(5,4,0,0)p°(t, s, z, y)dyds,
R4 t R4

(Voul0)(t,x) = (VouT(t, x))eo(t, z)

T
= Elg(X3"")NiYeo(t,z) + E [/ f(s,X?’t’x,O,O)NSE’tdS:| eo(t,x)
¢

X505 = ylp*(t, T, 2, y)dyeo (t, x)

- / 9(y) BING
Rd
T
+/ f(87 y7 0’ O)E[N::’ths’t’z == y]ps(t’ 87 x? y)dydseo—(t’x)7
t R4
T
WMt T) = E[g(X;’t’x)]—&—E{/ f(s,Xj’t’””,Kf’k,Zj’k)ds}
t
= /g(y)pf(t,T,m,y)dy
Rd

T
] s Ve s ) s s, KEN,
t R4
Vo ot z) = (Veu"* T (L, x))eo(t, x)

T
= E[g(X%t%N;’f}sa(t,x)+E[ / P, X305, YER, 22N s | 2o (t,)
t

X557 = ylp*(t, T, 2, y)dyeo (t, x)

- / o) EINE
Rd
T
+/ F(s, 9,05 (5, 9), (Vou" o) (s,y)) B[N XS0 = ylp°(t, s, 2, y)dydseo(t, x), k€ N.
t RA

5.2.1 Asymptotic Expansion Formula

We approximate X{ by an asymptotic expansion around the solution to ordinary differential equation X?

dX? =b(t, X)dt, XJ = z. (48)

Hereafter, let us denote X;'7’° by %gi X5 i € N. In the first place, we provide a key result as the lemma
below.

Lemma 5.1 For s € (¢,T],
Xire ek, ieN. (49)



LetXOtlby X””‘| =0, 1 € N. For every p € (1,00), k € N and N € N,

il 9et

N
e,t,x __ 0 i v 0,t,x N+1 . k,p
s = A ; .
X X; + E e X"+ 0(E™T) in DY asel0 (50)

Hereafter, we derive an asymptotic expansion of density of X;’t’r. Let

Xe,t,ac _ XO,t,ac
Fptt = L —— T (51)
13
Then,
N
Fpt® = PR 4 " R 4+ 0N in D, (52)
i=1

O,t,x __ t,x 0,t,x __ 0,t,x
where Fo" = Xy, Fiopm = X700, i 2> 1

Remark that although obviously Ff"** = 0, we use the notations FS'*®, X’{i7 X,zf“ k > 0 meaning its
dependence on x when u > t.
Let X(¢t,T;z) = {%:,;(t,T;x)}s,; be the d x d-matrix whose element is defined by

d T
Sig(t, Tiw) = / Gi(s, X060, (s, X0 )ds, 1<d,5 < d, (53)

where
61 (s, XJ0T) = (Vo XPU2 (Vo XJ0) Lon(s, XJ00) (54)

Hereafter, we use abbreviated notations such as F;*, X}, Xf 1, k > 0 and ¥;;(¢t,7), 1 < i, < d in stead of
Fob® XI ;, X,i T k>0and X;;(t,T;x), 1 <4,j < d respectively. Under Assumption 5.1 we obtain the following
expansions for E[p(X5"%)] with ¢ of polynomial growth rate and E[g(X5"")] with Lipschitz function g: they
are useful for giving the properties of the expansion of Y¢ and proving our main result Theorem 5.1. We also
characterize the Malliavin weights appearing in expansions as Kusuoka functions.

Proposition 5.1 1. For a measurable function ¢ : R? — R of at most polynomial growth, there exists non-
negative, non-decreasing and finite function C(T, N, x) of at most polynomial growth in x depending on T and
N such that

Blp(X5"")] - {E[sa()_(%t’z)] + ZeiE[so@%“)w?;m}

v0,t,x _ 0tz t,x 0,t,x __ (i) 0,t,x 0,t,z,0q T ; _
where Xp2"% = Xp"* +eX7h and mpp® =" H o XlT’Hl VX T) ekl i=1,--- N. Here,

222 >

k=1 B1+-+B=i.8;>1 oK) gf1,... d}*

< NTO(T, N ) (T — 1) VT2, (55)

2. For a Lipschitz function g : R — R with constant Cy, there exists C(T, N,x) depending on Cyq, T, N and x

such that
N
Blg(X5t=)] - {E[gu‘(%”n +3°  Blg(R2 ) ‘*m} < MO, N, )T - R (56)
i=1
where X 3" and Wg’}’x, i=1,---,N are same in 1.
Proof.

1. Let 6,(-) be the delta function. Then, &,(F;"") € D™ is expanded as follows:

e,t,x T E 81
Sy (Fob®) = §,(F%™) +Z 7 52 0u (P ) le=o0 (57)

(1 - ’LL) aNJrl v,t,x
+€N+1/ TWéy(FTt )|V:0du.
0 !

10



Therefore, the density of Fﬁ’t‘” is calculated as follows:

P (t,T,0,y) = E[é (F55")] (58)

= E[6,(F¥"") +le [ W (F57) |2 o} (59)

_\N N+1
peh / (—u) E{a 5y<F;*f’I>V_Eu] d
0

N! OvN+1
k
_ FO,t,z + Z Z E[ak FO,t,z glyoq,t :1: (60)
=1
1 (N+1)
+EN+1/ (1 _ ’LL N + 1 Z E 8k Fsu t, z HFsu al,t,z]
0

N 1
= B[5,(Fp )]+ Y e'Blo, (F " )mlpt] + eV / (1 — )N B[S, (Fg ") a gy du.  (61)
(0]

=1
Here, we use the integration by parts

(2)

ZE[@’“ (P HF° 7] = Bl (P )mp) (62)
with
(@ k (@ k
mort =D Ha(Fp", H o) = Ha(X [ X555 e kT (63)
k =1 k =1
and
(N+1) k
(N+1) Y Eloas,(Fp" H it = Bloy (P )7 1] (64)
k =1

with #3547 7 = (N +1 Z(NH) H,(Fb" Hz VESE “*) € K% 41. Remark that the following relation holds:

v x ,t,x 1
B [5,(X3")] = B [6<y_xg>/E<F£t )]

eg,t,x e,t,x 1
E [5y(XT’t’ )} =E |:6(y7X%)/E(FTt )} wa
We have
N
P(LTey) = e B, xoy(XUEO+ D e T B, x0)e (XUE )07
=1

1
4 [0 0 ) Bl g P b (65)

0

N
= E[5,(X2)]+ > ' Elo,(Xp)m)1"]
i=1

1
+ [0— B (X (66)

0

N
= LTy + Y BT IXVE =y’ T,a,y) (67)
1=1

1
et / (1 —w)V Blay 55 1 X550 = ylp* (t, T, 2, y)du. (68)

0

where X2.°% = X2"* + eX{ 1 and
o 1 Cwexpt el ) w-xnt )T

POt T w,y) = e : (69)

(27e2)4/2 det(S(t, T))1/2

11



Therefore, we have

Elp(Xate)] = / P T )y (70)

:/ e(y)p (tT:wderZ / Elr) 7| X" =yl (¢, T, 2, y)dy (71)
Rd

1
+€N+l/ (1—u)N/ () BRG] X500 = ylp™ (t, T, , y)dydu (72)
0 R4
N 1
= Elp(X2 )]+ Y &' Elp(Xp"" x4+ eV / (1 —w)NElp(XZ )7 ldu. (73)
i=1 0

The residual terms is estimated by the following inequality:
it it ~ N
|Blo(X5" )y o)l < le(XE" ) ea 7555 pller < C(T, N2)(T — ) V072, (74)

2. We have

/g(y)ps(t,T,:v,y)dy = /g(y)po(t,T,x,y)dy
R4 Rd

+ Z / 9(y) Elnd

+€N+1/ (1 —U)N/dg(y)E[ﬁ}‘ffl,TlX?’t’z = ylp"(t, T, z,y)dy,
0 R

= ylp’(t, T, z,y)dy

Let (gn)nen C C5° be a mollifier converging to g. For i € N, there exists Cf% € KE ., such that
|E [ga(X7°")750] | = |E [Vegn(XT")E ]| < IVagnlloo Gl (75)
Then,
|E [9(X3" w5 r] | < CollCRbarlln < CTN)(T - ) V272, (76)
We also obtain expansions for E[p(X55%) N5 "eo(t, 2) with ¢ of polynomial growth rate and E[g(X 55" )N&""]eo(t, z)
with Lipschitz function g: they are useful for giving the properties of the expansion of Z¢.

Proposition 5.2 1. For a measurable function ¢ : R? — R of at most polynomial growth, there exists non-
negative, non-decreasing and finite function C(T, N, x) of at most polynomial growth in x depending on T and

N such that
N
Elp(X5"")NG 1" ea(t, @) — {E@(X%W)NS;M + Ze’E[so(X%t’””)Nf,%’”]} co(t,z)
i=1
< Ne(T, Ny a)(T — t)N2, (77)
where X%t,x _ X%t’x—f—&Xi ;} N(()),;,ac _ (N(()),,;x,l el Ng:%,ac,d) and NB;},% _ (N?”qt«’m’l, e Ng,q{,x,d), i = 17 el d

)

are given by

d
Nyph = ZH(]-)(X%f’w,akX%W) ek, 1<k<d, (78)
Jj=1
and
d
NPEoR =N " Hy (X907, 0 X300 ml ) + Oprlp € KLy, 1<k <d. (79)
j=1

2. For a Lipschitz function g : R — R with constant Cy, there exists C(T, N, x) depending on Cyq, T, N and x

such that
Elg(X7"*)Ngpleo(t,z) - {E[g()?%“”)zvg;;] + Y ' Blg(Xp" I)N%]} eo(t,)
=1
<NTO(T, N a) (T — 1) VT2, (80)
where X307, Ng’,;z and Ng’;ﬁz, i=1,---,d are same in 1.

12



Proof.
1. We differentiate the expansion of E[p(X5"")] with respect to initial  as follows:

N
VoB[p(X3")] = VeElp(X2"")] + ) e Vo Elp(Xp"")nq"]

i=1
1
+€N+1 / (1 _ U)NVxE[ (Xsu ,t, x) ]1tls+t1xT]du.
0
For a smooth sequence (¢n)nen converges to ¢, we have

VaElon(X7")] = Elpa(Xz"" )N,

with N3%* € KTy and for 1 < k < d,

d
6 v x = s 50,t,z,j
g Mo (KH0) = D Bl (K39
p
= Elen(Xp"")N7",
with
d
Nyz" = ZH<j>(Xg’t’m»3kX%t’”) eK”,.
j=1

Also, we have for 1 <i< N, 1<k <d

0 0,t,xz\_0,t,z
o 2 Blipn (X4 "m0 5]

Z{E[ajwn@%m)a XTI m 0L + Blon(X95")0kmp "1}
j=1
= Blp(X3"")NDEH,

with
d
Ntzk ZH(J) XO,t,m akXO,t,'!,‘] O,t,1)+8 71'10’;—51 EICZ 1
=1
and
a E[ (Xs,t,x)ﬁ_s,t,x ]
82: T N+1,T
= ZE [056pn (X550 X2 ™I 7357 ] + Elo(X )i 355 1)
Jj=1
6, arest,x,k
= E[S"(X;t )vail,Tl
with

d
7tz k e, t,x e,t,x,j ~ st,z ~e,t,x
N+1,T = Z H(J) (X7, o Xy N+1,T) + 8k7"N+1 T
Here, we have for 1 < k < d,
8 Xs,t,:v e, t,x IC 8 ~e,t,x ICT
TN, € KNy1y 05N € KNy,
and then N7 ;- € K§. Therefore,

Elp(X5 )N '1] - {E[sou?%’fwg;;] +Y e'Elp (XW)N“T]}

i=1
1
S AR e e A
0
and

|E[p(X3M ") Nas %]l < C(T, N, a)(T — )2,

13

(87)

(88)

(90)

(91)



2. Let (gn)nen C C5° be a mollifier converging to g. For ¢ € N, there exists (fviLiT € IC(TNH)H such that

d
&,t,2\ ATE, 9 €,t,x 9 9 €,t,x\ ~€,t,@,j
E [gn(XT’L )NNErl T] = 8mkE [Qn(X ' )7 Nzrl T] = TMZE [axjgn(XTt )CNLJT] :

j=1
Then,
a o2 B
)t t _ \t, RN PR
Egn(X5")Niae] = D E {axm] W(X5") G X5 CE&,]T]
lj=1
T8 B
it ,tx,g
+ Z E [(%jgn(X; )MQ&VL,JT]
j=1
8 y T x,
_ S X0

Jj=1

with
d° teg ZH Xstun] 8Xstzlet,:c,j 0 e,t,x,j ’C
Oy = ol " Dan Vi) + aTUkCNH,T € ANt
Therefore,
B [g(X3"")NGL, 2] | < (TN, a)(T — ) VD2, (92)
O
Using the weights Tr?”;’w and Ng’:’x, i =0,1,---, N, in expansions in Proposition 5.1 and Proposition 5.2 , we

define recursive approximation formulas for (uf, V,uso). For € € (0, 1], define u**" and V,u**" ¢ on [0, T] x R¢,
k> 0,N >1 as follows. Let u®%" be

ug,O,N(t7x) ::/dg( ){ t,T,z,y +Z€ Elr; 0,t XOtw:y}pO(uT,x,y)}dy

T
+/ f(87y? 07 0)
t R4

N
{po(t,s,:my) + Y B IXOT = y]po(t,s,%y)} dyds,

i=1
and let V,u®%Vo be
(Vou "N o) (t, x) == (Vou® "N (t, 2))ea(t, x)

/ 9(W)E[Ng 7| X35 = ylp’(t, T, =, y)dyeo (t, z)
Rd
N
+ZEZ/ g(y)E'[Nio,ﬁX%t’z = y]p°(t, T, x, y)dyeo(t, z)
i=1 R4
T —
b e 00 BINGIRE ™ =y (0,5, ) sl 2
t R4

N T
+Z€i/ / F(5,9,0, 00BN [ XI5 = ylp° (¢, 5, @, y)dydseo(t, o).
i=1 t JR?

For k > 0, let uS* 1N be

N %) ::/ g(y){ (tL.T,x,y)+ Y Blm)plXp" —y]po(t,T,wvy)}dy (93)

i=1

/ dfsy,E“WSM(VzEkN)@w»

{p (t,s,2,y) + ZEiE[W?,’%IXS’t’x =" (t, s, y)} dyds,

=1

14



and let V,us* 1 Ng be

(Vous* TN o) (4 @) = (Vou® TN (8, 2))eo (t, ) (94)

:/ 9W)E[Ngp| X35 = ylp°(t, T, =, y)dyeo(t, x)
R4
+Z [ BN = . )10
T —
+/ F(s, 075N (s,9), (VeusN o) (s,9)) B[Ny 1| X5 = ylp°(t, s, 2, y)dydseo (¢, x)
t R4

N T
+> / / P,y (5,y), (Vaus ™V o) (5, ) BN X0
i=1 t JRA

= yp°(t, s, z, y)dydseo(t, x).

Then,

T
5 Jk+1, N(t x) E[g(X%t’z)] + E |:-/ f(sw)zvg,t,zj)/Ss,k,N,t,z7 Zs,k,N,t,z)ds:|
t

N

N T
+Z§1E[9(Xg,t,z)7r?’,jtﬂ} + ZEZE |:/ f(87)ng,t,z’}/::,IQ,N,t,z7 Z;,k,N,t,z)ﬂ_a,Stds] ’ (95)
i=1 t

i=1
T
(vus,k+1,No_)(t7m) _ {E[Q(X-g,t,z)Né)’,;] + E |:/ f(syx‘g,t,zyyss,k,N,t,z’ Z;,k,N,t,z)N(()):‘:dS]
t

N

+ZE7,E[ (XO,t,z Noth] +Z€ E |:/ f XO,t,z Ys,k,N,t,z ZE,k,N,t,z)NiO’;tds] }EU(t,l’),

i=1

(96)

where Ysa,lc,N,t,z — ue,k,N(S7Xg,t,z) and ZE,k,N,t,z — (vzue,k,NU)(Sng,t,z).
Here, the term

T
{E[g(X%t’ac)Ngy’;} +FE |:/ f(S,XSO’t’QC,Y‘Sg’k7N’t7x,Zg’k’N’t’x)Ng:;ds} }eo'(t,ib)
t

is similar to the representation of Z/"* shown in Ma and Zhang (2002) (or Civitanic, Ma and Zhang (2003) when
f =0). Hence, (us’k’N, Vzus’k’NU) is regarded as a recursive expansion around the representation formula of Ma
and Zhang (2002). Especially, by Lipschitz continuity of g, the following property holds for (u®*", vV, us"Ng).

Lemma 5.2 Fork >0, N € N,
=N (¢, 2)|

Vous Vot 2)|

C(T,z), (97)

<
< CO(T,x). (98)

where C(T,x) denotes a generic non-negative, non-decreasing and finite function of at most polynomial growth in
x depending on T'.

5.2.2 Error Estimate

For any 3, > 0, let Hg ,, be the space of functions v : [0,T] x R* — R™ such that

T
H’UH?—IB,“ =/ / e**|u(s, z)|Pe " dads < .
0 JRd

We also define the space Hg,,,x, For any 3, 1 > 0 and any diffusion process X, 0 < s < T starting from « at time
0, let Hg , x be the space of functions v : [0,7] x R — R™ such that

HU”Hﬂ X / / P Ellv(s, Xo)[Ple " dzds < oc.
R4

Remark that the following norm equivalence result holds (see Gobet and Labart (2010) for more details).
Suppose that b and o are bounded measurable functions on [0, 7] x R? and are Lipschitz continuous with respect
to x, and o satisfies the ellipticity condition. Then, there exist two constants c1,ce > 0 such that v € L?([0,T] x
R, eP2ds x e #12ldr)

2 2
alolliy,, <o, « <cllvli,,- (99)
The next theorem is our main result, which evaluates a global approximation error of (us’k’N , Voust N o) (in

(93) and (94)) for (u®, Vzu®o) (in (45) and (46)).
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Theorem 5.1 Suppose that Assumption 5.1 holds. Let C be C = ca/c1 and f be such that 2(1 4+ T)CC} < B and

2
set § = 229LITD g Then, for arbitrary k > 0 and N € N, there exists Co(T') depending on T and C1(T, N)
depending on T and N such that

€ € € € 1- 5k
lu® —u ’k’NH%IB,u +|(Veuto) = (Veu ’k’NJ)H?IB& < {C’O(T) 8+ 2NV (T, N) - < - >} , €€(0,1].

Proof.
Note that the following inequality holds:

= SN, + Vet = Vou™ ol

k_ ok N

< 2wt —u MG, + IVeuTo — VeuT o, )+ 2(]u 7y, +IVeu™ o = Vour " No|F, ).

First, we show the error ||u® — UE’kH%HB . I(Vauo) — (Vzus’kU)H%B , Dy using the norm equivalence, (99) and
the similar argument in the proof of Theorem 2.1 in El Karoui et al. (1997):

. . . 20C3(T + 1 o e
[u —uF |5, + [(Veuo) = (VouT o), , < L){H —u® G, + [(Veuo) = (Veu™ " lo) |7, )

Therefore,

20C3 (T + 1))’“
ﬂ 7

mau“%w+mmfwwwmﬂmws%@y(

where Co(T) such that ||u® — uE’OH%Iﬁ’“ +|(Veuto) — (Vzus’OU)H%ML < Co(T).

Next, we estimate the error |[u®* — us’k’NH%BM + | VeusFo — Vzuf’k’NUquB’H.

ekl _ ekt N

The difference u is represented as follows:

us,k+1(t’ fIf) _ ui,k«l»l,N(t’ .’L')

T
N / g(y)ps(t,T,x,y)dyﬂL/ F(s, 9,0 (5, 9), (Vau™" o) (s,9))p° (t, 5, 2, y)dyds
R4 t R4
N

—/ 9(y) {po(tTw,y)JrZE Bln}7 XO”—y]po(mT,:my)}dy
R

=1

T
—/‘ F(s,, 07PN (5,), (Vou Vo) (s,)
t R4

{ tsxy+§:sEW“”X“fwﬁwaay%de

N

= / 9(W)p" (¢, T, z, y)dy —/ 9(y) {po(t, T,ao,y)+ Y e Bl Xyt =y’ (t, T,any)} dy
Rd

i=1

+

T
/ / f(s,y,u"%(s,), (VauT"0) (s, y))p° (¢, s, x, y)dyds
Rd

T

\

F(s,y,u™"N (s,), (Vau™ N o) (s,9))p° (¢, 5, 2, y)dyds
Rd
T

—+

F(s, 9,05 N (s,y), (Vau" N o) (s,9)p° (¢, 5,2, y)dyds
Rd

T
/‘/‘fs%m%N@w<v N ) (s,9))
Rd
N
{ﬁ@&%w+§:5ﬂﬁﬂXT“—wf@&%w}@®~
=1

Remark that after the second equality, we add the terms + ftT fRd sy, u"N (s,1), (Vous BN ) (s, 9))p° (t, s, z,y)dyds.
Let I, Iz and I3 be

Lt,z) = / g(y)ps(t,Tw,y)dy—/ 9y ){ (. T,y +Z€ Elr}7 Xom—y}po(mT,w,y)}dy,
R4 R4
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T
Lita) = / £ (50,0 (s, 9), (Vo™ 0) (5,10 (1, 5, 2, ) dyds
t Rd
T
_ / F (=Y (5,9), (V=N o) (5, ) (5, 2, ) dyds,
t R4
T
I3(t,z) = / F(s,y,u™" N (s,y), (Vou " No)(s,y))p° (t, 5, z,y)dyds
t R4

T
- / / F(s,5, 07PN (5,), (Vo Vo) (s,))
t Rd

N
{po(t,s,x,y) + Y BRI = y]po(t,s,%y)} dyds.

i=1
The difference (V,u®" o) — (V,u" ") is represented as

(vxus,k+10_) _ (vzus,k+l,No_)

_ / g(y) EINZ X5 = ylpf (1, T, 2, y)dyeo(t, z)
Rd

XM = ylp® (¢, 5,2, y)dydseo (t, x)

T
n / P50 (5,9), (Vou=*0) (s, ) E[NE
t Rd

—/ 9W)EINgp| X35 = ylp°(t, T, x, y)dyeo(t, x)
R4
- Z / BINYHIX0™ = ylp (¢, T, , y)dyeo(t, o)
T —
—/ / f(s,y,u="N (s,9), (VmuE’k’NU)(s,y))E[Ngy’ﬂXg’t’m = y]p°(t, s, x, y)dydseo(t, x)
t Rd

N T
=y e / F(s,9,075 N (5,9), (Vo™ N o) (s, ) EIN] 7| X757 = ylp" (t, T, 2, y)dydseo (t, )
i R4

t

= / 9(y) B[N | X35 = ylp° (¢, T, z,y)dyeo(t, z)
Rd

- / BN =y (T, 2, y)dyeo (2
R

N

_Z:gi/Rd 9 E[N.y

F(s, 9,05 (5, 9), (Vou™"0)(s,y)) E[NS | XS0 = y]p°(t, 5, 2, y)dydseo (t, x)

Xph? = ylp’(t, T, 2, y)dyeo (t, x)

o

T

d

t
t d

(
F(s,y,u"" Y (s,y), (Vou™ N o) (s,9)) B[N | X5 = ylp® (L, s, ,y)dydseo(t, z)
(

F(s, 075N (s,9), (Vou™N o) (s,9)) E[NS | X = yp°(t, 5,2, y)dydseo(t, )

d

T
- / / T3, 055 (5,), (Vaus ¥ o) (5, ) EINOL XOU® = ylp0 (1, 5,2, y)dydseo (t, z)
t Rd

+

T 5

/T
t
N T
e [ s (). (T o) ) EINEAIRE =105, 1) s ).
i=1 t JRI

Let
J1 (t7 .Z') = / g(y)E[NJEJt‘X’?t’I = y]ps(tv T,m,y)dyz—:a(t, :E)
R4

7/ 9W)EINgp X35 = ylp°(t, T, x, y)dyeo(t, x)
R4

- Z [ SEINEIXE = ¢ Tyt 0),
Rd
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T
ot @) = //f(syyws’k(s,y),(Vzus’ka)(s,y))E[Nf’th?t’z:y]ps(t,s,w,y)dydsw(tvw)
t R

d
T
—/ F(s,y,u" N (s,y), (Vau™ No) (s, ) EINS | XS0 = ylp® (t, s, 2, y)dydseo (t, x)
Rd

t

X2 = ylp°(t, 5, x, y)dydsea(t, x)

T
altz) = / / P59, 055N (5, ), (Vaue ¥ o) (s, ) E[NE
t R4

T
—/ F(s,9,u™" (s,9), (Vou™"N o) (s, 9)) E[Ng L X0 = ylp°(t, 5, 2, y)dydseo (t, @)
t R4

t

N T
- ZE/ F(s,9,u™" N (5,9), (Vo™ o) (5,9)) EINDY | XS = ylp° (8, 5,2, y)dydseo (t, @)
=1 R

Then,

[t = a N <3G, + 3l + 3y,

[(Vau™ o) = (Vou™ M No) |5, <3| ilEr,, + 310217, + 3l s, -

By Proposition 5.1 and Proposition 5.2, we have the following estimates

N
L) = / g(y){zf(t,T,w,y)—p°<t7T,a:,y>—Ze"E[wi’;ﬂx%m=y}p°<t,T,x,y>}dy
Rd

i=1

< oT,x, N)ENTH(T — )N +2/2) (100)

‘Jl(tvx” = /dg(y){vaE(th7x7y)

N
—B[Ng " | X3 = ylp’ (4, T,w,y) — Y BINJEI XD =yl (t, T, =, y)}dyw@, z)
=1
< r(T,z, N)eNTHT — )N +D/2, (101)
and
T
Bl = | [ [ e s (T o) )
t R4
N
{ps(t, s,2,y) =P’ (b s,0y) — Y BrLXIYT = gk, x,y)} dyds
i=1
T
< C(T,z, N)ENH/ (s — )N FD/2 g
t
= C(T,z, N)eN (T — ) V+3/2 (102)
T
|J5(t,2)] = / F(s,y,u"5N (s, 9), (Vou™ N o) (s,9))S Vep® (L, s, 2,9)
t R4
N
—E[NS;QXSW = y]po(t, $,T,Y) — ZHE[NSQXSW = y]po(t7 s, x, y)}dydsa(t, T)
=1
T
< R(T,m,N)6N+1/ (s —t)N/2ds
t
= R(T,z,N)eNTH(T — t)V+2)/2, (103)

Here, ¢(T,z,N), C(T,z,N), r(T,z,N) and R(T,z, N) are some non-negative, non-decreasing and finite functions
of at most polynomial growth in z depending on 7" and N.
Therefore, we obtain

1N, <Y TVK(T,N), |s)%,, < VK (T, N),
1 illF, , <eNTVLUTN), |[JslF,, <NV Ls(T,N),
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for some K1 (T, N), K3(T,N), L1(T,N) and L3(T, N) depending on T" and N.
In order to estimate ||I2||3, and ||J2||3 ., we define

T
W T (t,x) = Elg(X5P™) + E U Fs, XE0" u=FN (g X200 (V,u N o) (s, ij’t‘z))ds} ) (104)
t

Since f is Lipschitz with constant Cr, again using the norm equivalence result, (99) and the similar argument in
the proof of Theorem 2.1 in El Karoui et al. (1997) we obtain

T
||12H§{ﬁ’u S C;l‘|us,k+l _ ﬂs,kJrl”%“u’XE — C;l / / 6BSEHu6,k+1(87X§) _ ﬁe,k+1(57X§)|2]d86*llf|1|dm
R4

T
< 01—1%/ E |:/ eﬁs|f(s,Xs€,ug’k(s,Xi),vxug’ka(s,ng)) — f(s,Xj,uE’k’N(s,Xj), (qua’k’Na)(s,Xj))|2ds:| e Mol gg
Rd 0
< QCl_lciT E i Bs e,k € e,k,N £\[2 e,k € e,k,N £\ (2 —plx|
S —5 e {|u" (s, X5) —u (s, X"+ [(Vau™ 0)(s, Xs) — (Vau o)(s,Xs)|"}ds| e dx
R4 0
20C3T .. ue e, ek,
< L {l[u* =N E, L+ 1(Veu o) = (VousNo)|[, ),
217y, < et I(Vou™ o) = (Vo™ o) [, x-
B / / e B|(Vou o) (s, X5) = (Vo™ o) (s, X5) Pldse " da
R’ﬂ
< CI% E [ / e’ |5, X3, u™" (5, X2), (Vau"0) (s, XI)) —f(s,Xz,uE”“%,Xi),(Vzue”“'No)(s,Xi))lzds] e dy
R4 0

1 T
< 26150L / E{ / eﬁ“‘{u“’“(s,Xi)uf*k’”(s,X§>|2+|(Vzu€”‘a)(s,X§)(Vzu“’“Noxs,Xs)lz}ds} e "ldz
R4 0

< 200%, e,k e,k,N |2 e,k e,k,N 2
< — ™ =, + 1(Veu™ 0) = (Vau™" o), -

B
Then, we have the following estimate for ||us**! — us’kH’N”%{ﬁ ., and [(Veus*Tto) — (Veus TN ) 13,

e,k+1 _ uE,k-‘—l,NH?—Iﬁ .

2CCL

K

< SENHDE(T,N) + {Ilu™* —u N, L+ 1(VauTb0) — (Vau™No) |17, 1 (105)

[(Vau™ o) = (Vou™ o) |13,
2(N+1) 2CCE [\ ek ekNy2 ek kN 2
< e L(T,N) + T{Hu —uw " [y, + [(Veu™"0) = (Veu™" "V 0)|m, , } (106)
where K(T,N) = 2max{K:1(T,N), K3(T,N)} and L(T, N) = 2max{L.(T, N), L3(T, N)}. Therefore, by (105) and
(106), we obtain
||u€,k+1 _ us,k+l,NH?{ﬁ,M + ||(vxu€,k+lo_) _ (que,k-‘rl,No_)H?{ﬁ‘u
< 20Dy (T, N)

B 2
+2CCL(BT + 1) {”ua,k _ us,k,N

where v(T, N) = 2max{K (T, N), L(T,N)}.
Remark that the differences u®° — u®%Y and V,u®%0 — V,u®" o are given as follows:

w0 ,x) — uE’O’N(t,JJ)

/ 9" (t, T, z,y)dy
R4

—/g(y){ T, x,y) +Z€E 0

T
+/ f(sﬂ y707 O)pi(t’ S7$7y)dyds
t R4

7, + 1(VouT o) = (Vaus"No) |, , 1, (107)

1 )

=y’ (t, T,:ray)} dy

N

T
—/ / f(5,9,0,0) {po(t, s,x,y)+ Y Bl XN = ylp’(e, s,w,y)} dyds
t R4

i=1
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and
(Vou0) (t,z) — (Vou®"No)(t, )

= / g(y)EINZY|X3" = ylp°(t, T, z,y)dyeo (t, x)
Rd

—/ 9W)EINg R X357 = ylp°(t, T, =, y)dyeo(t, x)
Rd'
N
i 0,t| vO0,t,x __ 0
DLl UL R SR
=1 Rd
T
; / F(5,9,0,0) EINZ[XE0 = ylp (£, 5,2, y)dyeor(t, 2)
t R4

T
—/ / f(5,5,0,0)E[NgH X" = ylp°(t, 5, 2, y)dyeo (¢, x)
t R4
N T
- 51/ / £(5,9,0,0)E[NJ X0 = yp°(t, s, x, y)dydseo (¢, z).
i— t R4

=1

Then, the term |Ju®° — uE’O’NquE Lt (Vzuso) — (Vmue’o’]\’a)\ﬁqﬁ . is estimated by the asymptotic error, that is,

ut® = OV (Vo 00) = (Tau Vo), < 2NV KT, N),

Bpn —
for some Ko(T,N).
Therefore, we obtain
Hus,kJrl _ us,k+l,Nl|%{ﬂ’u + H(vzus,kJrlo_) _ (vzue,k#»l,]\’o_)"?{ﬁy“

200%(T + 1)

< ST N) + 5 {llu™* = a5, + 1(VauT o) = (Vou™ o) |7, )
< &N, N)
2
JrQCC’L(ﬂT +1) {62(N+1)01(T’ N+

20CE(T+1) [\ cne1 b . .
2O ust - a4 (Vo) = (Vo 1’Na>|%{,3,u}}
2cc2(r+ 1)\ (2002 +1)\" 20C%(T + 1)

< 52(N+1)01(T, N) (Lﬂ> + (IJﬁ) ot (Lﬁ> 41
1 (2002(T+1))k+1

B
= €2<N+1)Cl (T,N) - 260 (T , (108)
mEs
where C1(T, N) = max{y(T, N), Ko(T, N)}. ,
20C2 (T+1)

Finally, Choose 8 such that 2CC%(T + 1) < 8 and set § =
global error

< 1, by (100) and (108) we obtain the

€ € € € 1- 5k
lu® == NG, + 1(Veu'o) = (Vou™ Vo), , < {Co(T) -8 4 SNHVOYT,N) - ( T3 )}

O

Remark 5.1 Consider the following small diffusion setting under a weaker condition:

t d t
Xf:a:+/ b(xg)ds+az/ o (XE)dW? (109)
0 =170

with smooth coefficients and Hérmander’s condition.
Using Malliavin calculus, Ben Arous and Léandre (1991) showed the Varadhan estimate for the density p®(x,y)
of X7*

lim 2e? log p°(z,y) = —dg(z,y), (110)
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where d%(x,y) is the Bismutian distance is given by

dp(z,y) = inf 1Rl (111)

@(h)1=y,det vy (), >0

Here, ®(h): is a skeleton of the process X;

<I>(h)t:ac+/ b(D( ds+sZ/ o (®(h)s)hids (112)

and v(¥(h)¢) is the deterministic Malliavin covariance
(D@(h)e, D@(h)e)m- (113)

See Chapter 4 in Barlow and Nualart (1995) and Léandre (2006) for more details. Using the above large deviation
(110), we conjecture that an approzimation for FBSDEs similar to Theorem 5.1 could be constructed, which seems
a interesting and a challenging task.

6 Applications: Pricing Options with Counterparty Risk under
the Local and Stochastic Volatility Models

This section applies our approximation algorithm to option pricing with counterparty risk in a simple FBSDE
setting. Here, we omit a discussion on modeling and pricing issues under default risk, and concentrate on the
concrete description of our approximation scheme with investigation of its validity by using a simple example.?
Particularly, we use the local and stochastic volatility models for the underlying (forward) price process S under
the risk-neutral measure. Let Y be the solution to the following non-linear BSDE:

T
Y; =g(St)—(1-R 5/ +ds—/ ZsdW.. (114)
t

Here, Y represents the value process with a target payoff g(St) taking the risky (substitution) closing out CVA into
account; R > 0 and 8 > 0 denote a constant recovery rate and a constant default intensity, respectively. Also, the
risk-free interest rate and the dividend rate of the underlying asset are assumed to be zero for simplicity. Next, let
(Y*, Z*)1>0 be a sequence of the following linear BSDEs:

T
v = g(Sr)— / ZJaw;. (115)
t
T
) = g(Sr)—-(1—-R 5/ (Yt ds — /Z;dW;.
t
T
vt = g(Sr)-(1—R 5/ Vrds — /Zf“dwj, E>1,
t

which is an approximation sequence of the value process Y.

Remark 6.1 Under the setting above, suppose we consider plain-vanilla options, that is g(St) = (S — K)* or
(K —S7)%. Then, given constant values of R and 3 as well as Y* > 0 for usual setup of parameters in practice, due
to the martingale property of the (risk-free) option value Y? under the risk-neutral measure, we are able to express

uk(t,s) == Ytk’t’S for each k =0,1,2,--- as follows:

uF(t,s) =u’

k .
ql
1+ Z,] : (116)
=1

where ¢ = (=1)(1 — R)B(T —t). Hence, for this simplest case we can easily obtain the benchmark values u®(t, s)
through evaluation of u®(t,s) by numerical computation such as the Monte Carlo simulation, against which the
validity of our approximation scheme is examined. However, note that it is much more tough task to get the
benchmark values under the situation with stochastic intensity and recovery, while our scheme is applicable under
the setting without substantial effort.

3See Fujii and Takahashi (2010, 2011) for the detail of modeling and pricing issues under default risk, for instance.
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6.1 Local Volatility Model

We consider the local volatility model

dSy = rSidt + o(t, Se)dWe, So > 0,

(117)

where W is an one dimensional Brownian motion and o(t,z) is the local volatility function. For simplicity, we

assume r; = 0. In our framework, we assume the following perturbed model
ds; = eo(t,S))dw}, S§=So.

Define
T
us(t,s) =Y = B [g(S3"°)] - E [/ (1- R),B(Yf’t’sﬁdT} .
t
Then, (,u°c)(t,s) := Z;"° is given by

T
(o) (t,x) = Zi* = B [g(S5*)NE] o(t,2) — E [ / (1- R)B(Yf’t‘s)*Nf’th] ot ),

where N is the Malliavin weight for the delta for the local volatility model

[T
Ni’t:—/ o (v, 551°)0.85 AW,
t

T—t
S50° is expanded as follows:
SEh® =Syt +eSy 4+ e255 5 + O(e?).

. 0,t,x t,s t,s .
In this case, Sy, S)'p and Sy are given by

S%,t,s — s,
T T
Si,&T _ / o(u, SOLY AW, = / o(u,s)dW, € Kt
¢ ¢
T u T "
shs = / xo(u, Sy") / (v, S0 ) AW, dW,, = / 9zo(u, s) / o(v, s)dW.dW, € K3
t t t t

Then, the density p*¥>*(¢,T, s, S) of S;‘t’s can be expanded as follows

pLV,S (t7 T’ 57 S)

R

pgzx;iom (tv Ta S, S)

1 . !
—{ B [(5-0/e(ST7)] + € B [8s—s) /(ST 7)mer ] }

1

= p{(s)} {1+ eBREVISES = (S — s)/e]}

2¢2 ftT o2(u, s)du

\/271'52 ftT o2(u, s)du

where TI'tL¥ is the Malliavin weight for the local model in the small diffusion expansion

T T
1 _ s —
7rtL‘T/ i — {Sé;/ o~ (7, s)dW» —/ DTS;Z‘TU YT, S)dWT},
¢ ¢

with the Malliavin derivative D for the Brownian motion W.

Then,
wlts) = Y
u'(ts) = Y
uk+1(t78) — 1/tk+1,t,5’ /ﬂZ 17

are approximated by
uo(t, s) o~ uﬂmoz (t,s)

/ 9(S)PEYEa (4T, 5, S)dS.
R

ul(t,s) ~ utllppmz(t,s)
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(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)
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T
= / g(S)péz‘zgfoz (t7 T7 S, S)dS - (1 - R)/B/ / (ugp]ﬂ'ow (T7 S))+p£p‘/pTOL (t7 T, S, S)deT
R R

k k
u +1(t,$) = ua;plro:c(ta S)

T
= / 9(S)PEros(t, T,s,8)dS — (1 — R)B / / (Whppron (T, S)) " Dapnsos (t, 7, 8, S)dSdr, k> 1.
R R
(128)

For example, we take eo(t,z) = eoz® (CEV volatility). For the case of CEV model, S;’t’x is expanded as
follows:

SEh =St e84+ 25y + O(e”). (129)

0,t,s t,s t,s .
where S2"°, S’ and Sy are given by

St =, (130)
T

Spy = /asaquelclT, (131)
t
T u

Syy = /aasa_l/ os*dW,dW, € K3 . (132)
t t

Then, th}/ is given as

LV _ 1 2 a 1 a «@

T, T - JZSQQ(T—'L‘) {/ / d”vd”u/t\ ags d”u / / / d”uquUs dLL }
_ 1 o252 1 Wy dW. B AW, 1% 1%
T 2T 1) {/ / W / 7ed / (/ ! ”+/T ! “) dT}'

(133)

Therefore, the conditional expectation of wf}/ given Sif} = y is computed as follows:

T
[7rt T |S =yl = E[’/TtLq‘{‘/ osdW,, = y| (134)
¢

1 T pu T T
_ 2 20-1 o o _
= 70232‘1(T—t)a0 s E[/t /t dequ/t s qu|/t os*dW, = y] (135)
T T T
—E[/ (/ dW, —l—/ AW, ) osdr| osdW,, = y| (136)
t T

_ 4 4a 1 vdu y 3y
) / | dd( (T - D)) (0282"(T—t))2> (137)

_ 1040484"‘ T ) _ 3y )
T2 (T~ ((0232a(Tt)):3 (0232&(Tt))2> (138)

Therefore, the approximated density of the CEV model is given as
pé}};ioz(tv T7 S, S)

o 1 ex —(S — 8)2 10(0'484a 1 2 ((S — S)/S)S . 3(5 — 8)/6
B 2me20282%(T —t) P { 2e20%s2(T — 1) } {1 * 2 (T=1 <(0282°‘(T —1))%  (0%2s?*(T — t))2) } ’
(139)

We show numerical examples of our approximation scheme (128) for the option price u(t,z) under the CEV
model with the call payoff function g(x) = (x — K)*. In this case, using (139) with ¢ = 1.0, we easily obtain
ugppmz(t,s) in (128) as follows:

uﬁpProz@? 5) =yN (Z?tT)) + (E(t7 T) - é((i”?l:)) y> n[y : 0, Z(t7 T)]7 (140)

where N(z) and n[z : u, Y] denote the standard normal distribution function, and the normal density function with
the mean p and the variance X, respectively. Also, y, ¥y and (7 are defined in the following:

y = s— Ka
S(t,T) = o282 (T —t),
¢, T) = aa4s4a_1u. (141)

2
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e The parameters of the model are specified as follows:
t=0.0, T=2.0, r=0.0, So =10,000, 6gs =0.1, @« =0.5, ¢ = 1.0, 8 = 0.06 (intensity), R = 0.0 (recovery rate).

Here, ops denotes the instantaneous volatility of the log-normal (or the Black-Scholes) process, and we set the
CEV volatility ocpv as ocev = 0’]355670‘ below.

The result is given in Table 1-3: AE ugpp,wox(: ugm,mx (0,50)) is evaluated by the equation (140), and AE
u’jppmz(: u’jppmz (0,50)), (k = 1,2) are evaluated based on the corresponding equations in (128) by numerical
integration with the equations (139) and (140). Exact value u(0, So) is approximated as in (116) by the equation
(142) below with k = 5, which gives the sufficiently convergent value for this case. Also, Benchmark u* = 4*(0, Sp),

k = 1,2 are computed by the following equation (142) with k = 1,2, respectively:

ko4
(0, So) l1 +>° ‘;] , (142)

where ¢ = (—1)(1 — R)BT, and the value of u°(0,So) is obtained based on Monte Carlo simulation for the CEV
process. In each simulation, the numbers of the trials and the time steps are 1,000,000 with the antithetic variable
method and 750, respectively. Also, in Table 1-3 the relative errors denoted by AE Error u and AE Error u* of our
asymptotic expansion are computed by (uh 0z (0, S0) —u(0, So))/u(0, So) and (uf,p0x (0, So) —u* (0, So)) /u* (0, So),
respectively. It is observed that uﬁppmz (= u’jppmz (0,.50)), kK = 1,2 become closer towards u(0, So).

Although this example uses only the e'-order expansion of the density, we already know from the existing work
(e.g. Takahashi et al. (2012)) that higher order expansions produce much more better approximation for the
risk-free option price u°, which is expected to provide more precise approximations for the solution to the BSDE
as well.

6.2 Stochastic Volatility Model

Let (S,v) be the Heston’s stochastic volatility model

dS: = 7Sidt + v SedW}, So >0 (143)
dve = k(0 —v)dt + v/ o (pdWy + /1 — p2dW2), v >0

where W = (W', W?) a two dimensional Brownian motion. For simplicity, we also assume r; = 0. Let X; := log S;
and then by It6 formula we have the logarithm underlying price process:

dX; = —%’Utdt + \/Ethl, o = log So, (144)
dve = k(0 —ve)dt 4+ vy/oi (pdW} + /1 — p2dW2), wo > 0.

We put a perturbation parameter, € in the following way:

€ € ¢ e
dXx; —§vtdt+s,/vtth17 xo = log So, (145)

dv; = k(0 —v))dt + ev\ /v (pdW} 4+ /1 — p2dW}), wo > 0.

Although the setting of the above FBSDE ((145) and (114)) does not rigorously satisfy the conditions in Section
5, our algorithm is still applicable to this model. We slightly modify the small diffusion expansion discussed in
Section 5 and apply the expansion of Takahashi and Yamada (2012). We expand X; as follows:

X; = X 42X + O(e%), (146)

where
t 1 [t
X? = w+/ s\/idel—f/ €vsds,
0 2 Jo
t T
1 L1
X = l// 7~’U1de5—*l// v1sds,
) 2V 2" ),
t
T— U0+/ k(0 — Us)ds,
0
t
vy = /e_'i(t_s)\/i(de;—i— 1—p2dW52).
0

Note that X? —z € K7 and X1; € K3 . When € = 1, by Takahashi and Yamada (2012),

Pt T, @, y) = Blo,(Xp"")] + vE[8,(Xz"")mir], (147)
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where 7rS ¥ is the Malliavin weight for the Heston’s stochastic volatlhty model in the expansion
1 T
Ty = a3 Xip [ D1 X3PTdW! — Ds,leTDs,IX%‘vlds , (148)
Z(t7 T) t t
with
S(t,T) = 6(T — t) + (vo — 0)e™ (1 — " T~ /. (149)

Here, D; is the Malliavin derivative for the Brownian motion W'. Therefore, we have the following density
approximation

T ) T ) = S (b)) (150)
Here,
Cr(@,y) = Elrpr | X550 =y
with
C(t,T) = ﬁ e T LY — (0o — 0) — (vo — O)w(T —t) + """ (vg — O+ O(—1 + w(T — 1)) } . (152)

Applying the approximate density (150) derived above, we are able to take an approximation sequence (u’;pmow) k
as follows:

Ugpprox(t,€7) = / 9(e")Paprron (t, Ty 2, y)dy.
R
e / 9P (0, T, 2, y)dy
R
T
_(1_R)ﬁ/ /(uﬁpproz(7—7ey))+p§;‘72ioz(t7T7x,y)dyd7—7 k207 (153)
t R

where z = log S.
Finally, in Table 4-6 let us provide numerical examples of our approximation for the option price u(¢,x) in the
stochastic volatility model with the call payoff function g(x) = (z — K)™*.

e The parameters of the model are specified as follows:
t=0.0, T=3.0, r=0.0, So =10,000, vo =0.25, k =1.0, § =0.25, e =1, v =0.1,p = —0.25,
B =0.06 (intensity), R = 0.0 (recovery rate).
We remark that the computations of Exact value u(0, So), Benchmark u®, AE Error u and AE Error u*
are same as in Table 1-3, except that the benchmark value of uO(O, So) is calculated by the Fourier transform

method for the Heston model (144). Also, the values of AE uﬁppmz (= u';ppmz (0,.S0)) are computed in the
following:

Cppron(0,50) = / o (0, T, 2, y)dy
R
= Cps(z,2(0,T)) +vC(0,T)Son(d:1(0,T,z) : 0,1)(—d2(0,T, z))/%(0,T),

uappmz(O So) Cps(z,2(0,7)) + vC(0,T)Son(d1(0,T,x) : 0,1)(—d2(0,T,x))/X(0, T

1 - ﬁ/ / uapproz T,€ ))+p§;‘72f‘oz(t77-7:c>y)dyd7-7 k 2 07 (154)
where x = log So and
Cps(z,%(t,T)) = €*N(di(t,T,z)) — KN(da(t, T, z)), (155)
with
N(z) /w L %y
r) = e R
oo V2T Y
b)) = B L s,
(1) 2
bt T,e) = 08K L aa
S(t,T) 2

As in the CEV case, it is observed that u,’ipwox (= u’;ppm(o, So)), k = 1,2 become closer towards u(0, Sp).
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approx

| AE Error u | AE Error «F ‘

Oth
1st
2nd

2514.59
2212.84
2230.41

2514.49
2212.81
2231.11

12.75%
-0.78%
0.04%

0.00%
0.00%
0.01%

approx

| AE Error u | AE Error uF ‘

Oth
1st
2nd

563.13
495.55
499.61

564.19
496.51
500.61

12.96%
-0.59%
0.23%

0.19%
0.19%
0.20%

Table 1: European call option price with CVA under the CEV model « = 0.5 (In-the-money case : K = 7500, Exact
value u(0, Sp) = 2230.24)
’ Iteration k | Benchmark u* | AE uF

Table 2: European call option price with CVA under the CEV model a = 0.5 (At-the-money case : K = 10000, Exact
value u(0, Sp) = 499.45)
’ Iteration k | Benchmark u* | AE F

Table 3: European call option price with CVA under the CEV model a = 0.5 (Out-of-the-money case : K = 12500,
Exact value u(0,Sy) = 26.01)
’ Iteration k | Benchmark u* | AE F

approx

| AE Error u | AE Error «F ‘

Oth 29.33 29.28 12.55% -0.18%
1st 25.81 25.76 -0.97% -0.20%
2nd 26.02 25.97 -0.16% -0.20%

Table 4: European call option price with CVA under the Heston volatility model (In-the-money case : K = 7500,
Exact value u(0,5y) = 3612.84)
’ Iteration k | Benchmark v” | AE F

approx

AE Error u | AE Error «F ‘

Oth 4325.36 4327.84 19.79% 0.06%
1st 3546.80 3549.44 -1.75% 0.07%
2nd 3616.87 3620.13 0.20% 0.09%

Table 5: European call option price with CVA under the the Heston volatility model (At-the-money case : K = 10000,
Exact value u(0,5y) = 2784.16)
’ Iteration k | Benchmark u* | AE uF

approx

AE Error u | AE Error v ‘

Oth 3333.25 3336.51 19.84% 0.10%
1st 2733.27 2736.06 -1.73% 0.10%
2nd 2787.26 2790.55 0.23% 0.12%

approx

AE Error u | AE Error u* ‘

Oth 2608.42 2611.74 19.87% 0.13%
1st 2138.90 2141.33 -1.72% 0.13%
2nd 2181.16 2183.98 0.24% 0.13%
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Table 6: European call option price with CVA under the the Heston volatility model (Out-of-the-money case : K =
12500, Exact value u(0, Sp) = 2178.74)
’ Iteration k | Benchmark u* | AE uf



7 Conclusion

This paper has developed a new general approximation method for forward-backward stochastic differential equa-
tions (FBSDEs). In particular, we have proposed a closed-form approximation based on an asymptotic expansion
for forward SDEs combined with Picard-type iteration scheme for BSDEs. Based on Malliavin calculus, especially
applying so called Kusuoka function (Kusuoka (2003)), we have justified our method with its error estimate for the
approximation.

From a practical viewpoint, examination of our scheme under more complex examples is an important and
interesting problem. Moreover, a challenging task is to develop mathematical validity of approximations with per-
turbation for fully coupled FBSDEs. Those topics as well as our approximation method under weaker mathematical
condition will be discussed in our future researches.
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Proof of Lemma 5.1

prove the assertion by induction. First,
9 ~ [
X = ; /0 VX{(VXZ) oils, X)W (156)
d t
+z—:Z/ VX; (VX)) aVi(s, X2)Vils, XE)ds. (157)
i=1 70
Since VX;,(VX{)™ ' € K and 0;, i = 1,---,n are bounded, %X? e kf.
For k > 2, %%X? = (% g’:k X0t %%X?’ﬂ is recursively determined by the following:
(k) t )
1 8k e 1 811 e,d; B 1,7 e
H@X’f B lzd 0 <H lT‘ Oeli Xs 8% Vo (s, X; )ds (158)
g-dg Jj=1



t [ B 1 d
1 9% e,d; 8 . . i
+ 2 /0 <Hw€szs )E 05, 3 (s, X5)dW, (159)

15.dg j=1 i=1
(k) t 1 alj d
€,d; i
+e Y / Hl?!aslj X; 04 ol (s, X5)dW! (160)
1g,dg j=1 i=1
B8 _ ol
where Bdﬂ = ToqOeay
® l
1
IIEDDDDEEDII an)
lg.dg  B=1lg€L; gdge{l, d}B
and

8
Lip:= {1/311, N Z-: llj,ﬂeN)} (162)

The above SDEs is linear and the order of the Kusuoka function %%X? is determined inductively by the term

(i-1)

B 5l d
Z /vxt VX?) <Hll ’ j’df>Za§Bm(s,X§)dW§ ek’ (163)
j= i=1

lﬁadﬁ

Then, £ 2. X7 e K]. O

B Proof of Lemma 5.2

£,0,N

U and V,u®% "o are represented as

T
u N (tz) = E[g()?%t’“”wTHE[ / f(s,)?;’“,o,ﬂ)ﬂsds],
t

T
unE’O’NU(@ x) = {E [g(X%t’x)ryT] +E |:/ f(S, ngt’xv 0, 0)75d5:| } EO’(t, 13),
t
where 9, = 143 " e'nll and s = Y.~ &' N{. Remark that 9, € K ingo1,ny =K§ and ys € Kiing 10 n—1) =
KZ,. Since g is Lipschltz contmuous and of hnear growth in x, we obtain

|Elg(X3:"")07]| < llg(X2")eel[9r]ze < C(T, ), (164)
|Elg(X3"")yrlea(t, z)| < eC(T, x). (165)

Also, as f is of linear growth in z, we have

T T
‘E[/ f(s, X2H%,0,0)0ds] g/ C(T, z)ds, (166)
t t

g/ C’(T,ac)islitds7 (167)

where C(T,x) denotes a non-negative, non-decreasing and finite function of at most polynomial growth in = de-
pending on T. Here, we use 4 and 5 of Proposition 5.2. Then, we obtain estimates for u®%" and V,u®%"o:

T
‘E[/ f(s, X207 0,0)ysds)eo(t, )
t

u=" N (¢ C(T,z), (168)

C(T, z). (169)

)
Vau™ "o (t,2)|

INIA

Note that for k > 1,

T
uPN () = E[g(X%’t’z)ﬁT}JrE{

t

f(s,XE’t’z,vf”“1*N<s,X2*“”),vzuf”“I’Na(s,)‘c?f’”“‘)wsds} ,
Veus P No(tz) = E[g(Xg’t’x)VT}sa(t,x)

T
+E [/ Flo, X207 a0 (5, XO07), Vau™ N (s XO”))%dS] eo(t, ).
t
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Hence, by recursive applications of 4. and 5. in Proposition 5.2, we have

T
]E { / f(s,x?t’w,usv’f-lﬂs,x&wkuav’f-l’Ncr(s,x?vtwsds}
t

N
S

2
e
N
IS
»
=
-
=

T
’E |:/ f(S7X;),t,w7u€,kI,N(S,Xg,t,r)7vzus,kI,NU(S,Xg,t,w))ryst:|
t

AN
S
2
!
&
—_
U
V)
i
-3
=

Then, we obtain (97) and (98). O

Remark B.1 Since f is a Lipschitz function, we are able to estimate (167) and (171) more precisely by using the
mollifier argument. However, above is enough for our purpose here.
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