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Abstract

The problem of estimating covariance and precision matrices of multivariate
normal distributions is addressed when both the sample size and the dimension of
variables are large. The estimation of the precision matrix is important in various
statistical inference including the Fisher linear discriminant analysis, confidence
region based on the Mahalanobis distance and others. A standard estimator is
the inverse of the sample covariance matrix, but it may be instable or can not
be defined in the high dimension. Although (adaptive) ridge type estimators are
alternative procedures which are useful and stable for large dimension. However, we
are faced with questions about how to choose ridge parameters and their estimators
and how to set up asymptotic order in ridge functions in high dimensional cases. In
this paper, we consider general types of ridge estimators for covariance and precision
matrices, and derive asymptotic expansions of their risk functions. Then we suggest
the ridge functions so that the second order terms of risks of ridge estimators are
smaller than those of risks of the standard estimators.

Key words and phrases: Asymptotic expansion, covariance matrix, high dimen-
sion, Moore-Penrose inverse, multivariate normal distribution, point estimation,
precision matrix, ridge estimator, risk comparison, Stein-Haff identity, Stein loss,
Wishart distribution.

1 Introduction

Statistical inference with high dimension has received much attention recent years and
has been actively studied from both theoretical and practical aspects in the literature.
Of these, estimate of the precision matrix is required in many multivariate inference
procedures including the Fisher linear discriminant analysis, confidence intervals based
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on the Mahalanobis distance and weighted least squares estimator in multivariate linear
regression models. A standard estimator of the precision based on the sample covariance
matrix is likely to be instable when the dimension p is large and close to the sample size
N even if N > p. In the case of p > N , the inverse of the sample covariance matrix
cannot be defined, and an estimator based on the Moore-Penrose generalized inverse of
the sample covariance matrix has been used in Srivastava (2005). Another useful and
stable estimator for the precision matrix is a ridge estimator, and its various variants
have been used in literature. For example, see Ledoit and Wolf (2003, 2004), Fisher and
Sun (2011) and Bai and Shi (2011). However, superiority of the ridge-type estimators over
the standard estimators have not been studied except Kubokawa and Srivastava (2008),
who obtained exact conditions for the ridge-type estimators to have uniformly smaller
risks than the standard estimator. However, their results are limited to specific ridge
functions and special loss functions.

To specify the problem considered here, let y1, . . . ,yN be independently and identically
distributed (i.i.d.) as multivariate normal with mean vector µ and p× p positive definite
covariance matrix Σ denoted as Np(µ,Σ), Σ > 0. Let y = N−1

∑N
i=1 yi, V =

∑N
i=1(yi−

y)(yi − y)t and n = N − p. Then, in the case of n ≥ p, V has a Wishart distribution
with mean nΣ and degrees of freedom n, denoted as Wp(Σ, n). When n < p, it is
called a singular Wishart distribution, whose distribution has been recently studied by
Srivastava (2003). In many inference procedures, an estimate of the precision matrix Σ−1

is required. In the case that n > p, the standard estimator of Σ−1 is Σ̂
−1

0 = cV −1 for a
positive constant c, but it may not be stable when p is large and close to n. In the case of
p > n, the estimator cV −1 cannot be defined. Srivastava (2005) used the estimator cV +

based on the Moore-Penrose inverse V + of V .

In this paper, we address the problems of estimating both covariance matrix Σ and
precision matrix Σ−1, and consider general ridge-type estimators, respectively given by

Σ̂Λ = c(V + dΛ̂), and Σ̂
−1

Λ = c(V + dΛ̂)−1, (1.1)

where c and d are positive constant based on (n, p), and Λ̂ is a p×p positive definite statis-

tic based on V . Examples of the ridge function Λ include Λ̂ = λ̂I, Λ̂ = diag (λ̂1, . . . , λ̂p)

and others, where λ̂, λ̂1, . . . , λ̂p are functions of V . We evaluate the difference of risk
functions of the ridge-type and the standard estimators asymptotically for large n and p,
where the risk functions are measured with respect to the quadratic loss and the Stein
loss functions. Then we derive conditions on d and Λ̂ such that the ridge-type estimators
improve on the standard estimators asymptotically.

The paper is organized as follows. Section 2 treats estimation of the covariance matrix
Σ, and gives asymptotic evaluations for risks of ridge estimators when (n, p) → ∞. The
estimation of the precision matrix Σ−1 is dealt with in Section 3. For estimation of
the covariance matrix relative to the quadratic loss, we can handle both cases of n > p
and p > n in the unified framework. For the precision matrix, however, the ridge type
estimator has different properties between the two cases, and the standard estimator is
cV + in the case of p > n, so that we need to treat the two cases separately. The asymptotic
evaluations relative to the Stein loss functions are investigated in Section 4 when n > p.

2



Some examples of the ridge function Λ̂ are given in Section 5. Risk performances of the
ridge-type estimators are investigated by simulation in Section 6. Concluding remarks
are given in Section 7. Some technical tools and proofs are given in the appendix.

2 A Unified Result in Estimation of Covariance un-

der Quadratic Loss

Let X = (x1, . . . ,xn) be a p×n random matrix such that xi ∼ Np(0,Σ) for i = 1, . . . , n,
where Σ is an unknown positive definite matrix. Let V = XX ′. In the case of n ≥ p,
V is distributed as a Wishart distribution Wp(n,Σ) with n degrees of freedom. We
first consider the estimation of the covariance matrix Σ in terms of the risk function
R1(Σ, Σ̂) = E[L1(Σ, Σ̂], where L1(Σ, Σ̂) is the quadratic loss

L1(Σ, Σ̂) = tr [(Σ̂Σ−1 − I)2].

The loss function is invariant under the scale transformation Σ → AΣA′ and Σ̂ → AΣ̂A′

for any nonsingular matrix A.

A standard estimator is of the form cV for c ∈ R+, where R+ is a set of real positive
numbers, and the optimal c in terms of the risk is given by c1 = 1/(n + p + 1) and the

risk of the estimator Σ̂0 = c1V is p(p+ 1)/(n+ p+ 1). This can be easily seen for n ≥ p
and it follows from Konno (2009) for p > n. To improve the estimator c1V , we consider
a class of estimators given by

Σ̂Λ = c1(V + dΛ̂), (2.1)

where Λ̂ is a p× p positive definite matrix based on V , and d is a positive constant. As
several choices of d, we consider cases of d = 1, d = p, d = n and d = max{

√
n,

√
p} ≡ dn,p

and investigate risk performances analytically and numerically. Let

∆1 = R1(Σ, Σ̂Λ)−R1(Σ, Σ̂0).

To investigate ∆1 asymptotically, we assume the following conditions:

(A1) Assume that (n, p) → ∞. Throughout the paper, δ given in the following is a
constant satisfying 0 < δ ≤ 1. Assume either (A1-1) or (A1-2) for order of (n, p), where

(A1-1) p = O(nδ) for 0 < δ ≤ 1 in the case of n ≥ p,
(A1-2) n = O(pδ) for 0 < δ ≤ 1 in the case of p > n.

(A2) There exist limiting values limp→∞ tr [(Σ−1)i]/p and limp→∞ tr [(ΛΣ−1)i]/p for
i = 1, 2, where Λ is a p× p symmetric matrix based on Σ.

(A3) Assume that Λ̂ is a p × p symmetric matrix based on V such that tr [{(Λ̂ −
Λ)Σ−1}2]/p = Op(n

−1), E[tr [Σ−1(Λ̂−Λ)]]/p = Op(n
−1) and E[tr [Σ−1ΛΣ−1(Λ̂−Λ)]]/p =

Op(n
−1).

Some examples of statistics Λ̂ satisfying condition (A3) will be given in Section 5.

In this paper, we use the notations

W = Σ−1/2V Σ−1/2,Γ = Σ−1/2ΛΣ−1/2, Γ̂ = Σ−1/2Λ̂Σ−1/2,

m = n− p,Chmax(A) = (the largest eigenvalue of A).
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Theorem 1 Assume conditions (A1)-(A3). Then, the risk difference of the estimators

Σ̂Λ = c1(V + dΛ̂) and Σ̂0 is approximated as

∆1 =
pd

(n+ p)2

{d

p
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}
+

p

n+ p

{
O
(
d

√
p/n

√
n+ p

)
+O

( d2/n

n+ p

)}
. (2.2)

For d = 1, p, n and max{
√
n,

√
p}, we get the following approximations from Theorem

1.

Corollary 1 Assume conditions (A1)-(A3).
(1) In the case of d = 1,

∆1 = − 2p

(n+ p)2
tr [ΛΣ−1] +Rn,p, (2.3)

where Rn,p = O(n−2+3δ/2) for p = O(nδ) and Rn,p = O(p−δ/2) for n = O(pδ) for 0 < δ ≤ 1.
(2) In the case of d = p,

∆1 =
p2

(n+ p)2

{
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}
+Rn,p, (2.4)

where Rn,p = O(n−2+5δ/2) for p = O(nδ) and Rn,p = O(p1−δ/2) for n = O(pδ) for 0 < δ ≤
1.

(3) In the case of d = n,

∆1 =
pn

(n+ p)2

{n

p
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}
+Rn,p, (2.5)

where Rn,p = O(n−1+3δ/2) for p = O(nδ) and Rn,p = O(pδ/2) for n = O(pδ) for 0 < δ ≤ 1.
(4) In the case of d = max{

√
n,

√
p} ≡ dn,p,

∆1 = −2
pdn,p

(n+ p)2
tr [ΛΣ−1] +Rn,p, (2.6)

where Rn,p = O(n−1+δ) for p = O(nδ) and 1/2 < δ ≤ 1, and Rn,p = O(1) for n = O(pδ)
and 0 < δ ≤ 1.

As seen from (2.3) and (2.4), the leading term of the risk difference is always negative
in the case of d = 1, but the sign of the leading term in the case of d = p depends on the
sign of tr [(ΛΣ−1)2] − 2tr [ΛΣ−1]. It should be noted here that the order of the leading
term in (2.3) is O(p2/(n + p)2), while that in (2.4) is O(p3/(n + p)2). This means that
if the quantity tr [(ΛΣ−1)2]− 2tr [ΛΣ−1] is negative, then for large p the risk gain in the
case of d = p is much larger than that in the case of d = 1. This observation can be
confirmed by simulation studies in Section 6.

In the case that n > p and p = O(nδ) for 0 < δ ≨ 1, Corollary 1 (3) implies that

∆1 =
n2

n+ p
tr [(ΛΣ−1)2] +O(n−1+2δ),
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which shows that Σ̂Λ with d = n and δ < 1 has a larger risk than Σ̂0 asymptotically.

Since the leading term in (2.2) is a quadratic function of d, it can be minimized at

d = ptr [ΛΣ−1]/tr [(ΛΣ−1)2].

In the case of Λ = λI for a positive parameter λ, the minimizing dλ is

dλ = ptr [Σ−1]/tr [Σ−2]. (2.7)

A corresponding estimator of dλ is given by Λ̂3 of Example 2 in Section 5 when n > p.

Proof of Theorem 1. The risk difference of the estimators Σ̂Λ = c1(V + dΛ̂) and

Σ̂0 is written as

∆1 =E
[
tr [{c1V Σ−1 − I + c1dΛ̂Σ−1}2

]
−R1(Σ, Σ̂0)

=E
[
2c1dtr [(c1V Σ−1 − I)Λ̂Σ−1] + c21d

2tr [(Λ̂Σ−1)2]
]
. (2.8)

We shall evaluate each term in the r.h.s. of (2.8). The first term in the r.h.s. of the last
equality in (2.8) is written as

E
[
c1dtr [(c1V Σ−1 − I)Λ̂Σ−1]

=c1d(nc1 − 1)tr [ΛΣ−1] + c1dE
[
tr [{c1V Σ−1 − I}(Λ̂−Λ)Σ−1]

]
=− p(p+ 1)d

(n+ p+ 1)2
tr [ΛΣ−1]

p
+ c1dE

[
tr [{c1V Σ−1 − I}(Λ̂−Λ)Σ−1]

]
. (2.9)

It is here noted from the Cauchy-Shwartz’ inequality that the inequality

(tr [AB])2 ≤ tr [A2]tr [B2] (2.10)

holds for symmetric matrices A and B. It is also noted that tr [{c1V Σ−1 − I}2] =

Op(p
2(n+ p)−1) since E[tr [{c1V Σ−1 − I}2]] = R1(Σ, Σ̂0) = p(p+ 1)/(n+ p+ 1). Then,

c1dtr [{c1V Σ−1 − I}(Λ̂−Λ)Σ−1] ≤ c1d
{
tr [{c1V Σ−1 − I}2]tr [{(Λ̂−Λ)Σ−1}2]

}1/2

,

which is of order Op((n+ p)−1d[p3n−1(n+ p)−1]1/2). Thus, from (2.9),

E
[
c1dtr [(c1V Σ−1 − I)Λ̂Σ−1]

=− p(p+ 1)d

(n+ p+ 1)2
tr [ΛΣ−1]

p
+O

( dp
√

p/n

(n+ p)3/2

)
. (2.11)

Finally, we estimate the term c21d
2E[tr [(Λ̂Σ−1)2]. Note that

c21d
2E

[
tr [(Λ̂Σ−1)2]

]
=c21d

2tr [(ΛΣ−1)2] + 2c21d
2E

[
tr [ΛΣ−1(Λ̂−Λ)Σ−1]

]
+ c21d

2E
[
tr [{(Λ̂−Λ)Σ−1}2]

]
. (2.12)
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Under condition (A3), it is observed that

c21d
2E

[
tr [ΛΣ−1(Λ̂−Λ)Σ−1]

]
=O

( d2p/n

(n+ p)2

)
,

c21d
2tr [{(Λ̂−Λ)Σ−1}2] =O

( d2p/n

(n+ p)2

)
,

so that

c21d
2E

[
tr [(Λ̂Σ−1)2]

]
= c21d

2tr [(ΛΣ−1)2] +O
( d2p/n

(n+ p)2

)
. (2.13)

Combining (2.11) and (2.13), we get

∆1 =− 2p(p+ 1)d

(n+ p)2
tr [ΛΣ−1]

p
+

pd2

(n+ p)2
tr [(ΛΣ−1)2]

p

+
p

n+ p

{
O
(d√p/n
√
n+ p

)
+O

( d2/n

n+ p

)}
, (2.14)

which yields the approximation in Theorem 1.

3 Estimation of Precision under Quadratic Loss

In this section we consider the estimation of the precision matrix Σ−1. For estimation
of the covariance matrix, we have treated both cases of n > p and p > n in the unified
framework. For the precision matrix, however, the ridge type estimator has different
properties between the two cases, so that we need to treat the two cases separately.

3.1 Case of n > p

We begin by considering the case of n > p in estimation of the precision matrix Σ−1 in

terms of the risk function R∗
1(Σ, Σ̂

−1
) = E[L∗

1(Σ, Σ̂
−1
)], where

L∗
1(Σ, Σ̂

−1
) = tr [(Σ̂

−1
Σ− I)2],

which is invariant under the scale transformation. A standard estimator is of the form
cV −1 for c ∈ R+, and the risk is R∗

1(Σ, cV −1) = E[c2tr [W−2]− 2ctr [W−1] + p], which is

R∗
1(Σ, cV −1) = c2

p(m+ p− 1)

m(m− 1)(m− 3)
− 2c

p

m− 1
+ p. (3.1)

Thus, the best constant c is c2 = m(m − 3)/(n − 1), and the risk is R∗
1(Σ, Σ̂

−1

0 ) =

p(mp+ 2m− n+ 1)/{(m− 1)(n− 1)} for Σ̂
−1

0 = c2V
−1.

A drawback of Σ̂
−1

0 is that it may be close to be instable when p is large and n− p is

small. To modify the estimator Σ̂
−1

0 , we consider a class of estimators given by

Σ̂
−1

Λ = c2(V + dΛ̂)−1, (3.2)
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where Λ̂ is a p× p positive definite matrix based on V satisfying condition (A3). Then,

we investigate whether Σ̂
−1

Λ improves Σ̂
−1

0 Let ∆∗
1 = R∗

1(Σ, Σ̂Λ) − R∗
1(Σ, Σ̂0). To give

approximation of ∆∗
1, we assume the following condition:

(A4) There exist limiting values limp→∞ tr [Σi]/p, i = 1, 2, and limp→∞ tr [(ΛΣ−1)j]/p,
j = 1, 2, 3.

Theorem 2 Assume conditions (A1-1), (A3) and (A4). Also assume that m = n−p > 7

and δ < 1. Then, the risk difference of Σ̂
−1

Λ and Σ̂
−1

0 can be approximated as

∆∗
1 =

pd

n2

{d

p
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}
+O(d3n−3+δ) +O(d2n−5/2+3δ/2)

+O(dn−5/2+5δ/2) +O(dn−2+3δ/2). (3.3)

For the cases of d = 1, p and
√
n, from Theorem 2, we get the following corollary.

Corollary 2 Under the same conditions as in Theorem 2, the following evaluations hold:
(1) For d = 1 and δ < 1, ∆∗

1 = −2pn−2tr [ΛΣ−1] +O(n−2+3δ/2) +O(n−5/2+5δ/2).
(2) For d = p and δ < 1,

∆∗
1 =

p2

n2

{
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}
+O(n−5/2+7δ/2) +O(n−2+5δ/2).

(3) For d =
√
n and 1/2 < δ < 1,

∆∗
1 = −2

p
√
n

n2
tr [ΛΣ−1] +O(n−1+δ) +O(n−2+5δ/2).

Proof of Theorem 2. For evaluating the risk R∗
1(Σ, Σ̂

−1

Λ ), it is noted that

(V + dΛ̂)−1 =(V + dΛ)−1 + {(V + dΛ̂)−1 − (V + dΛ)−1}
=(V + dΛ)−1 + d(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1,

so that the risk of the estimator Σ̂
−1

Λ = c2(V + dΛ̂)−1 is written as

R∗
1(Σ, Σ̂

−1

Λ ) =E
[
tr [{c2(V + dΛ̂)−1Σ− I}2]

]
=E

[
tr [{c2(V + dΛ)−1Σ− I + c2d(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1Σ}2]

]
=E

[
tr [{c2(V + dΛ)−1Σ− I}2]

]
+ c22d

2E
[
tr [{(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1Σ}2]

]
+ 2c2dE

[
tr [{c2(V + dΛ)−1Σ− I}(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1Σ]

]
=I1 + I2 + I3. (3.4)
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For I2, it is estimated as

c22d
2tr [{(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1Σ}2

≤c22d
2tr [(Λ̂−Λ)V −1ΣV −1(Λ̂−Λ)V −1ΣV −1]

=c22d
2tr [(Γ̂− Γ)W−2(Γ̂− Γ)W−2]

=
d2

(m− 1)2
tr [{(βW−2 − I + I)(Γ̂− Γ)}2].

for β = m(m−1)(m−3)/(n−1). Since E[W−2] = (1/β)I, it is noted that E[βW−2] = I.
Thus, I2 is evaluated from above as

I2 ≤ 2
d2

(m− 1)2
E
[
tr [{(βW−2 − I)(Γ̂− Γ)}2]

]
+ 2

d2

(m− 1)2
E
[
tr [(Γ̂− Γ)2]

]
. (3.5)

Using Lemmas 6-8 and condition (A3), we can demonstrate that tr [(βW−2 − I)2] =

Op(p
2/n), so that the first term in (3.5) is evaluated as d2n−2E[tr [{(βW−2 − I)(Γ̂ −

Γ)}2]] ≤ d2n−2E[tr [{(βW−2− I)}2]tr [{(Γ̂−Γ)}2]], which is of order O(d2n−2−1+2δ−1+δ),
or O(d2n−4+3δ). Since the third term is of order O(d2n−3+δ), it is observed that I2 =
O(d2n−4+3δ) +O(d2n−3+δ).

Since I1 = O(n−1+2δ) as seen below, for I3, we have

c2dtr [{c2(V + dΛ)−1Σ− I}(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1Σ]

≤
[
Op(n

−1+2δ)× {Op(d
2n−4+3δ) +Op(d

2n−3+δ)}
]1/2

=Op(dn
−5/2+5δ/2) +Op(dn

−2+3δ/2),

so that

I2 + I3 = O(d2n−4+3δ) +O(d2n−3+δ) +Op(dn
−5/2+5δ/2) +Op(dn

−2+3δ/2). (3.6)

Finally, we estimate I1. Since

(V + dΛ)−1 = V −1 − (V + dΛ)−1dΛV −1, (3.7)

the term c2(V + dΛ)−1Σ− I is rewritten as

c2(V + dΛ)−1Σ− I =c2V
−1Σ− c2(V + dΛ)−1dΛV −1Σ− I

=(c2V
−1Σ− I)− (V + dΛ)−1dΛ(c2V

−1Σ− I)− (V + dΛ)−1dΛ,

so that the first term I1 is expressed as

I1 =E
[
tr [(c2V

−1Σ− I)2] + tr [{(V + dΛ)−1dΛ(c2V
−1Σ− I)}2]

+ tr [{(V + dΛ)−1dΛ}2]− 2tr [(c2V
−1Σ− I)2(V + dΛ)−1dΛ]

− 2tr [(c2V
−1Σ− I)(V + dΛ)−1dΛ] + 2tr [(c2V

−1Σ− I){(V + dΛ)−1dΛ}2]
]

=R∗
1(Σ, Σ̂

−1

0 ) + I11 + I12 − 2I13 − 2I14 + 2I15. (3.8)
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We shall evaluate each term in (3.8). Using Lemmas 6-8, we can evaluate I11 as

I11 ≤d2E
[
tr [{(c2V −1Σ− I)V −1Λ}2] = d2E

[
tr [{(c2W−1 − I)W−1Γ}2]

=d2E
[
tr [c22W

−2ΓW−2Γ− 2c2W
−2ΓW−1Γ+W−1ΓW−1Γ]

]
= O(d2n−3+2δ).

Similarly, from (3.7), Lemma 10 and condition (A4),

I12 =d2E
[
tr [(W−1Γ)2]− 2dtr [(W + dΓ)−1Γ(dW−1Γ)2]

+ d2tr [{(W + dΓ)−1ΓdW−1Γ}2]
]

=
d2

n2
tr [Γ2] +O(d3n−3+δ),

since d2tr [{(W +dΓ)−1ΓdW−1Γ}2 ≤ d3tr [(W−1Γ)3] and tr [Γ3]/p = O(1). For I13, from
(3.7),

I13 =dE
[
tr [(c2W

−1 − I)2(W−1 − (W + dΓ)−1dΓW−1)Γ]
]

=dE
[
tr [(c2W

−1 − I)2W−1Γ]
]

− d2E
[
tr [(c2W

−1 − I)2(W + dΓ)−1ΓW−1Γ]
]

=I131 − I132.

It can be seen that I131 = pdn−2tr [Γ] +O(dn−3+2δ). Also, it is observed that

I132 ≤d2E[tr [(c2W
−1 − I)2(W−1Γ)2]]

=d2c2E[tr [(c2W
−1 − I)W−2ΓW−1Γ]]− E[tr [(c2W

−1 − I)(W−1Γ)2]]

≤d2c2E[tr [{(c2W−1 − I)W−1}2]tr [(W−1Γ)4]] +O(d2n−3+2δ),

where the first term in the last equality can be estimated as O(d2n−5/2+3δ/2). Thus,

I13 =
pd

n2
tr [Γ] +O(dn−3+2δ) +O(d2n−5/2+3δ/2).

The term I14 is evaluated as

I14 =dE[tr [(c2W
−1 − I)(W−1 − (W + dΓ)−1dΓW−1)Γ]]

=dE[tr [(c2W
−1 − I)W−1Γ]]− d2E[tr [(c2W

−1 − I)(W + dΓ)−1ΓW−1)Γ]]

=I141 + I142.

It can be seen that I141 = 0 and I142 = O(d2n−5/2+3δ/2). Thus, I14 = O(d2n−5/2+3δ/2).
For I15, it is noted that tr [(c2V

−1Σ − I){(V + dΛ)−1dΛ}2] ≤ d2
[
tr [{Γ(c2W−1 −

I)}2]tr [(W−2Γ)2]
]1/2

= Op(d
2n−5/2+3δ/2) since tr [{Γ(c2W−1 − I)}2] = Op(n

−1+2δ).
Combining these evaluations gives that

I1 =R∗
1(Σ, Σ̂

−1

0 ) +
pd

n2

{d

p
tr [Γ2]− 2tr [Γ]

}
+O(d3n−3+δ) +O(d2n−5/2+3δ/2) +O(dn−3+2δ). (3.9)

Together with (3.6), we get Theorem 2.
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3.2 Case of p > n

We next consider the case of p > n in the estimation of the precision matrix Σ−1. In this
case, V is singular, and there does not exist the inverse of V . A possible estimator of
Σ−1 is cV + for c ∈ R+, where V + is the Moore-Penrose generalized inverse of V . To
improve on the estimator cV +, we consider estimators of the form

Σ̂
−1

Λ = c(V + pΛ̂)−1. (3.10)

A loss function treated here is the quadratic loss L∗
1(Σ, Σ̂

−1
) = tr [(Σ̂

−1
Σ − I)2]. Rel-

ative to this loss function, an approximation of the risk is provided under the following
condition:

(A5) There exist the limiting values limp→∞ tr [(Λ−1Σ)i]/p for i = 1, 2.

(A6) Assume that Λ̂ satisfies that tr [{(Λ̂
−1

−Λ−1)Σ}2]/p = Op(n
−1), E[tr [Σ(Λ̂

−1
−

Λ−1)]]/p = Op(n
−1) and E[tr [ΣΛ−1Σ(Λ̂

−1
−Λ−1)]]/p = Op(n

−1).

Theorem 3 Assume conditions (A1-2), (A5) and (A6) with c = cn,p = O(p). Also

assume that Λ̂ satisfies the following condition:

tr [X ′Λ̂
−1
ΣΛ̂

−1
X] = Op(np) and tr [X ′Λ̂

−1
ΣΛ̂

−1
ΣΛ̂

−1
X] = Op(np). (3.11)

Then, the risk of the estimator Σ̂
−1

Λ given in (3.10) is approximated as

R∗
1(Σ, Σ̂

−1

Λ ) = p
{
1− 2

c

p

tr [Λ−1Σ]

p
+

c2

p2
tr [(Λ−1Σ)2]

p
+O(n−1)

}
+O(n). (3.12)

Proof. Let X = (x1, . . . ,xn) be a p × n random matrix such that V = XX ′ and
x1, . . . ,xn are i.i.d. as Np(0,Σ). Note that

(V + pΛ̂)−1 = p−1Λ̂
−1

− p−2Λ̂
−1
X(In + p−1X ′Λ̂

−1
X)−1X ′Λ̂

−1
.

The quadratic loss of Σ̂
−1

Λ is written as

tr [{c(V + pΛ̂)−1Σ− I}2]

=tr
[{ c

p
Λ̂

−1
Σ− I − c

p2
Λ̂

−1
X(In + p−1X ′Λ̂

−1
X)−1X ′Λ̂

−1
Σ
}2
]

=tr
[{ c

p
Λ̂

−1
Σ− I

}2
]

− 2
c

p2
tr
[
(In + p−1X ′Λ̂

−1
X)−1X ′Λ̂

−1
Σ{ c

p
Λ̂

−1
Σ− I}Λ̂

−1
X

]
+

c2

p4
tr
[{

(In + p−1X ′Λ̂
−1
X)−1X ′Λ̂

−1
ΣΛ̂

−1
X

}2
]
,
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where the second term in the r.h.s. of the last equality is of order Op(n) from condition
(3.11). For the third term, it is observed that

p−2tr
[{

(In + p−1X ′Λ̂
−1
X)−1X ′Λ̂

−1
ΣΛ̂

−1
X

}2
]

≤p−1tr
[
(X ′Λ̂

−1
X)−1

{
X ′Λ̂

−1
ΣΛ̂

−1
X

}2
]

=p−1tr
[
P Λ̂

−1/2
ΣΛ̂

−1
XX ′Λ̂

−1
ΣΛ̂

−1/2
]

≤p−1tr
[
X ′Λ̂

−1
ΣΛ̂

−1
ΣΛ̂

−1
X

]
,

which is of order Op(n) from condition (3.11), where P = Λ̂
−1/2

X(X ′Λ̂
−1
X)−1X ′Λ̂

−1/2
,

being idempotent. Thus,

tr [{c(V + pΛ̂)−1Σ− I}2] = tr [{(c/p)Λ̂
−1
Σ− I}2] +Op(n). (3.13)

We next evaluate the first term in the r.h.s. of (3.13) as

c2

p2
tr [(Λ̂

−1
Σ)2]− 2

c

p
tr [Λ̂

−1
Σ]

=
c2

p2
tr [(Λ−1Σ)2]− 2

c

p
tr [Λ−1Σ] + 2

c2

p2
tr [(Λ̂

−1
−Λ−1)ΣΛ−1Σ]

+
c2

p2
tr [{(Λ̂

−1
−Λ−1)Σ}2]− 2

c

p
tr [(Λ̂

−1
−Λ−1)Σ]

=
c2

p2
tr [(Λ−1Σ)2]− 2

c

p
tr [Λ−1Σ] +O(pn−1),

from condition (A6). This shows (3.12).

Lemma 1 If Λ̂ satisfies Chmax(Λ̂
−1
) = Op(1) for large (n, p) satisfying (A1-2), then

condition (3.11) is satisfied under condition tr [Σi]/p = O(1) for i = 1, 2, 3.

In fact, since Chmax(Λ̂
−1
) = Op(1), it is sufficient to show that E[tr [XX ′Σi]] =

O(np), i = 1, 2, which can be easily verified if tr [Σi]/p = O(1), i = 1, 2, 3.

Finally, we compare the risk functions of the two estimators Σ̂
−1

Λ and Σ̂
−1

0 = cV + for

the Moore-Penrose generalized inverse V +. The risk function of Σ̂
−1

0 is

R∗
1(Σ, Σ̂

−1

0 ) =p− 2
c

p
E[tr [pV +Σ]] +

c2

p2
E[tr [(pV +Σ)2]]

=p
{
−2

c

p
E[tr [L−1H ′

1ΣH1]] +
c2

p2
E[ptr [(L−1H ′

1ΣH1)
2]]
}
,

for H1 and L defined in (A.3). It follows from Lemma 5 that

E[tr [L−1H ′
1ΣH1]] ≤Chmax(Σ)Chmax(Σ

−1)
n

p− n− 1
,

E[ptr [(L−1H ′
1ΣH1)

2]] ≤ Chmax(Σ){Chmax(Σ
−1)}2np(p− 1)

{(p− n− 1)(p− n− 3)− 2}(p− n− 1)
,
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both of which are of order O(pδ−1) when n = O(pδ) for 0 < δ < 1. Hence, we get the
following proposition.

Proposition 1 Assume that Chmax(Σ) and Chmax(Σ
−1) are bounded for large p, and

that p− n ≥ 4, (n, p) → ∞ and n = O(pδ) for 0 < δ < 1. Then, R∗
1(Σ, Σ̂

−1

0 ) = p+O(pδ)
when c/p = O(1).

Combining Theorem 3 and Proposition 1 gives the following asymptotic approximation

for ∆∗
1 = R∗

1(Σ, Σ̂
−1

Λ )−R∗
1(Σ, Σ̂

−1

0 ).

Corollary 3 Assume the conditions given in both Theorem 3 and Proposition 1. Then,

∆∗
1

p
= −2

c

p

tr [Λ−1Σ]

p
+

c2

p2
tr [(Λ−1Σ)2]

p
+O(p−δ) +O(pδ−1). (3.14)

4 Extensions to the Stein Loss

We have investigated the risk improvement of the ridge-type estimators relative to the
quadratic loss function so far. We next address the query whether the observed proper-
ties given in the previous sections hold for another loss function. As a loss function in
estimation of the covariance matrix, we treat the Stein loss

L2(Σ, Σ̂) = tr [Σ̂Σ−1]− log |Σ̂Σ−1| − p,

which has been used frequently in the litrerature. It is noted that L2(Σ, Σ̂) is available

in the case that Σ̂ is positive definite. Thus, we can handle only the case of n > p. For
the Stein loss, the best constant c among estimators cV is c3 = 1/n, and let Σ̂0 = c3V .

Let ∆2 = R2(Σ, Σ̂Λ)−R2(Σ, Σ̂0). To derive asymptotic approximation of ∆2, we assume
the following condition:

(A7) Either Chmax(Λ̂) = Op(1) or Chmax(nW
−1) = Op(1) holds for large n and p,

n > p. Also assume that tr [(ΛΣ−1)3]/p = O(1).

It is noted that condition (A7) is satisfied when p/n → γ for 0 < γ < 1, for Bai and
Yin (1993) showed that the smallest and largest eigenvalues of W /n are almost surely
bounded by a constant.

Theorem 4 Assume conditions (A1-1), (A2), (A3) and (A7) with m = n−p > 7. Then,

the risk difference of the estimator Σ̂Λ = c3(V + dΛ̂) relative to the Stein loss L2(Σ, Σ̂)
is evaluated as

∆2 =
pd

2n2

{d

p
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}
+O(d3n−3+δ) +O(d2n−5/2+3δ/2) +Op(dn

−2+3δ/2). (4.1)

The proof is given in the appendix. Theorem 4 gives the following corollary.
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Corollary 4 Under the same conditions as in Theorem 4, the following evaluations hold
for d = 1 and p:

(1) For d = 1, ∆2 = −pn−2tr [ΛΣ−1] +Op(n
−2+3δ/2).

(2) For d = p and δ < 1,

∆2 =
p2

2n2

{
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}
+O(n−5/2+7δ/2) +O(n−2+5δ/2) +O(n−3+4δ).

We next treat the estimation of the precision matrix in terms of the risk R∗
2(Σ, Σ̂

−1
) =

E[L∗
2(Σ, Σ̂

−1
)], where the Stein loss for estimating Σ−1 is L∗

2(Σ, Σ̂
−1
) = tr [Σ̂

−1
Σ] −

log |Σ̂
−1
Σ|−p. Relative to the Stein loss, the best estimator among cV −1 is the unbiased

estimator Σ̂
−1

0 = c4V
−1, where c4 = m − 1. Let ∆∗

2 = R∗
2(Σ, Σ̂Λ) − R∗

2(Σ, Σ̂0). For the
loss L∗

2, we get a similar dominance result in estimation of the precision matrix, which
will be shown in the appendix.

Theorem 5 Under conditions (A1-1), (A2), (A3) and (A7) with m = n− p > 7, the risk

function of Σ̂
−1

Λ with c4 = m− 1 is approximated as

∆∗
2 =

pd

2n2

{d

p
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}
+O(d3n−3+δ) +O(d2n−5/2+3δ/2) +O(dn−2+3δ/2), (4.2)

Corollary 5 Under the same conditions as in Theorem 5, the following evaluations hold
for d = 1 and p:

(1) For d = 1, ∆∗
2 = −pn−2tr [ΛΣ−1] +Op(n

−2+3δ/2).
(2) For d = p and δ < 1,

∆∗
2 =

p2

2n2

{
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}
+O(n−5/2+7δ/2) +O(n−2+5δ/2) +O(n−3+4δ).

5 Examples of Statistic Λ̂ for Estimating Λ

As shown so far, the asymptotic approximations of the risk differences are based on values
of d and Λ−1Σ, and in the case of d = p, the improvement of the ridge type estimator over
the standard one depends on a choice of Λ. In this section, we provide some examples for
statistics Λ̂ satisfying condition (A3) or (A6).

Example 1 Consider the statistic given by

Λ̂1 = â1I for â1 = tr [V ]/(np). (5.1)

This is an unbiased estimator of Λ1 = a1I for a1 = tr [Σ]/p. As given in Lemma 12,
Srivastava (2005) showed that â1 − a1 = Op((np)

−1/2) under condition (A2) for large n or

p. This shows that Λ̂1 = â1I satisfies conditions (A3) and (A7). Thus, in the case that

13



both n and p are large under condition (A1), the results given in Theorems 1-5 follow.
For example, from Corollary 1, it is seen that for (2.3) with d = 1,

∆1 = − 2

(n+ p)2
tr [Σ]tr [Σ−1] +Rn,p,

and for (2.4) with d = p,

∆1 =
1

(n+ p)2
tr [Σ]

{
tr [Σ]tr [Σ−2]− 2ptr [Σ−1]

}
+Rn,p.

The second-order term in the former case is negative, while the second-order term in the
latter case is not necessarily negative.

We next investigate the conditions in Theorem 3 when p > n. Note that

â−1
1 − a−1

1 = −a−1
1 (â1 − a1) + a−2

1 (â1 − a1)
2 + op((np)

−1).

Since E[â1 − a1] = 0, E[(â1 − a1)
2] = O((np)−1) and â1 = Op(1), it is easily verified that

condition (A6) is satisfied, and the results given in Theorem 3 hold. Especially, from
(3.14),

lim
p→∞

∆∗
1/p = lim

p→∞

1

(tr [Σ])2
{
ptr [Σ2]− 2(tr [Σ])2

}
,

for c = p. The inequality limp→∞ ∆∗
1/p ≤ 0 is satisfied when Σ is close to (const.)I, but

it does not hold for Σ away from (const.)I.

Example 2 Consider the statistic given by

Λ̂2 = (â2/â1)I for â2 =
tr [V 2]

pn2
− (tr [V ])2

pn3
. (5.2)

As given in Lemma 12, Srivastava (2005) showed that â2 is an unbiased estimator of
a2 = tr [Σ2]/p and â2 − a2 = Op((np)

−1/2) under condition (A2) for large n or p. Note
that

â2
â1

− a2
a1

=
a2
a1

{ â2 − a2
a2

− â1 − a1
a1

}
− a2

a1

{(â1 − a1)
2

a21
+

(â1 − a1)(â2 − a2)

a1a2

}
+Op(n

−3/2), (5.3)

which implies that E[â2/â1 − a2/a1] = O(n−1) and E[(â2/â1 − a2/a1)
2] = O(n−1). This

shows that Λ̂2 satisfies conditions (A3) and (A7). Thus, in the case that both n and p
are large under condition (A1), we have the results given in Theorems 1-5. For example,
from Corollary 1, it is seen that for (2.3) with d = 1,

∆1 = − 2p

(n+ p)2
tr [Σ2]tr [Σ−1]

tr [Σ]
+Rn,p,
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and for (2.4) with d = p,

∆1 =
p2

(n+ p)2
tr [Σ2]

(tr [Σ])2
{
tr [Σ2]tr [Σ−2]− 2tr [Σ]tr [Σ−1]

}
+Rn,p.

The second-order term in the former case is negative, while the second-order term in the
latter case is not necessarily negative.

We next investigate the conditions in Theorem 3 when p > n. Similar to (5.3), it
can be verified that condition (A6) is satisfied, since â2/â1 = Op(1). The results given in
Theorem 3 hold. Especially, from (3.14),

lim
p→∞

∆∗
1/p = − lim

p→∞

a21
a2

,

for c = p. The inequality limp→∞ ∆∗
1/p ≤ 0 is always satisfied.

Example 3 Consider the case of n > p and p = O(nδ) for 0 < δ ≤ 1. Then, Lemma 13
proves that the estimators given by

b̂1 =
m

p
tr [(V + â1I)

−1],

b̂2 =
m2

p
tr [(V + â1I)

−2]− p

m
(b̂1)

2,
(5.4)

are consistent estimators of b1 and b2, respectively, where â1 is given in (5.1) and bi =
tr [Σ−i]/p for i = 1, 2. That is , b̂1 − b1 = Op((np)

−1/2) and b̂2 − b2 = Op(n
−1/2). Based

on these statistics, we consider the statistic

Λ̂3 = (b̂1/b̂2)I. (5.5)

Similarly to (5.3), we can see that E[b̂1/b̂2 − b1/b2] = O(n−1) and E[(b̂1/b̂2 − b1/b2)
2] =

O(n−1). This shows that Λ̂3 satisfies conditions (A3) and (A7). Thus, in the case that
both n and p are large under condition (A1), we have the results given in Theorems 1-5.
For example, from Corollary 1, it is seen that for (2.3) with d = 1,

∆1 = − 2p

(n+ p)2
(tr [Σ−1])2

tr [Σ−2]
+Rn,p,

and for (2.4) with d = p,

∆1 = − p2

(n+ p)2
(tr [Σ−1])2

(tr [Σ−2])2
+Rn,p.

The second-order terms in the two cases are negative.

We next investigate the conditions in Theorem 3 when p > n. Similar to (5.3), it can
be verified that condition (A6) is satisfied, since b̂1/b̂2 = Op(1). The condition (3.11) is
satisfied, and the results given in Theorem 3 hold. Especially, from (3.14),

lim
p→∞

∆∗
1/p = lim

p→∞

tr [Σ−2]

(tr [Σ−1])2

{
tr [Σ2]tr [Σ−2]− 2tr [Σ]tr [Σ−1]

}
,

for c = p. The inequality limp→∞ ∆∗
1/p ≤ 0 is satisfied when Σ is close to (const.)I, but

it does not hold for Σ away from (const.)I.
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Example 4 Consider the statistic given by

Λ̂4 = n−1diag (v11, . . . , vpp), (5.6)

where vii is the i-th diagonal element of V . Then, Λ̂4 is an unbiased estimator of Λ =
diag (σ11, . . . , σpp).

We shall verify conditions (A3) and (A6). Note that vii/σii ∼ χ2
n and that E[(vii/n−

σii)
2] = 2σ2

ii/n. For (A3), it is seen that for Σ−1 = (σij),

E[tr [{(Λ̂4 −Λ)Σ−1}2]] =
∑
i,j

σijσjiE[(vii/n− σii)(vjj/n− σjj)]

≤
∑
i,j

σijσji{E[(vii/n− σii)
2]E[(vjj/n− σjj)

2]}1/2

=
2

n

∑
i,j

σijσjiσiiσjj =
2

n
tr [(ΛΣ−1)2].

(5.7)

Thus, condition (A3) holds if tr [(ΛΣ−1)2]/p = O(1) for lage p. For (A6), it is seen that

E[tr [{(Λ̂
−1

4 −Λ−1)Σ}2]] =
∑
i,j

σijσji

σiiσjj

E[(1− nσii/vii)(1− nσjj/vjj)]

≤
∑
i,j

σijσji

σiiσjj

{E[(1− nσii/vii)
2]E[(1− nσjj/vjj)

2]}1/2

=
2(n+ 4)

(n− 2)(n− 4)

∑
i,j

σijσji

σiiσjj

=
2(n+ 4)

(n− 2)(n− 4)
tr [(Λ−1Σ)2],

which is of order O(p/n) if tr [(Λ−1Σ)2]/p = O(1) for lage p. Similarly, E[tr [(Λ̂
−1

4 −
Λ−1)Σ] = 2(n − 2)−1p and E[tr [(Λ̂

−1

4 −Λ−1)ΣΛ−1Σ] = 2(n − 2)−1tr [(Λ−1Σ)2]. Hence,

conditions (A6) holds for Λ̂4. For condition (3.11), it is noted that if tr [Σ−1]/p = O(1),
then

tr [X ′Λ̂
−1
ΣΛ̂

−1
X] = Chmax(Σ)tr [Λ̂

−2
XX ′] = Chmax(Σ)

p∑
i=1

n2/vii,

where vij denotes the (i, j) element ofXX ′. Here,
∑p

i=1E[n2/vii] = n2
∑p

i=1E[(σiiχ
2
n)

−1] =

n2(n − 2)−1tr [Σ−1] = O(np), so that tr [X ′Λ̂
−1
ΣΛ̂

−1
X] = Op(np) if tr [Σ−1]/p = O(1)

and Chmax(Σ) = O(1). Similarly, it can be seen that E[tr [X ′Λ̂
−1
ΣΛ̂

−1
ΣΛ̂

−1
X]] =

O(np) if tr [Σ−2]/p = O(1). Thus, condition (3.11) is satisfied for Λ̂4 if Chmax(Σ) = O(1).

Concerning the risk difference in estimation of Σ−1 for p > n, it follows from Corollary
3 that limp→∞ ∆∗

1/p = limp→∞{−2tr [Λ−1Σ]/p + tr [(Λ−1Σ)2]/p} for c = p. This means
that in the case of Λ = λI for λ > 0, the improvement of the ridge type estimator is
attained around the spherical point Σ = λI, while in the case of Λ = diag (σ11, . . . , σpp),
the improvement can be realized near the diagonal point Σ = diag (σ11, . . . , σpp).
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6 Simulation Studies

We now investigate the numerical performances of the risk functions of the ridge-type
estimators in comparison with the standard estimators through simulation.

As a model for simulation experiments, we consider the random variables xi from
Np(0,Σ) for i = 1, . . . , n, where

Σ =


σ1

σ2

. . .

σp




ρ|1−1| ρ|1−2| · · · ρ|1−p|

ρ|2−1| ρ|2−2| · · · ρ|2−p|

...
...

. . .
...

ρ|p−1| ρ|p−2| · · · ρ|p−p|




σ1

σ2

. . .

σp

 ,

for a constant ρ on the interval (−1, 1) and σi = 5+ (−1)i−1(p− i+1)/p. Let V = XX ′

for X = (x1, . . . ,xn). Then for estimation of Σ, we can calculate the four kinds of ridge

estimators Σ̂Λ,i = c(V + dΛ̂i) for Λ̂i’s given in (5.1), (5.2), (5.5) and (5.6), which are
denoted by Rid1, Rid2, Rid3 and Rid4. As values of d, we treat the three cases: d = 1,
p and dn,p for dn,p = max{

√
n,

√
p}. We use these notations for estimation of Σ−1. It is

noted that Λ̂3 or Rid3 is available only for n > p.

The simulation experiments are carried out under the above model for (n, p) = (200, 80),
(120, 80), (60, 80) and (40, 80) and ρ = 0.1 and 0.5. Based on 10,000 replications, we cal-
culate averages of the following Relative Risk Gain of the ridge estimators:

RRGi =100× {E[tr [(Σ̂0Σ
−1 − I)2]]− E[tr [(Σ̂Λ,iΣ

−1 − I)2]]}/E[tr [(Σ̂0Σ
−1 − I)2]],

RRG∗
i =100× {E[tr [(Σ̂

−1

0 Σ− I)2]]− E[tr [(Σ̂
−1

Λ,iΣ− I)2]]}/E[tr [(Σ̂
−1

0 Σ− I)2]],

where Σ̂
−1

0 = pV + in the case of p > n.

The simulation results for estimation of Σ are reported in Table 1. In the case of
d = 1, the ridge-type estimators are always better than the standard estimators, but
the amounts of improvement are small. In the case of d = p, the values of Rid1, Rid2
and Rid4 are very large for ρ = 0.1, but negative and very small for ρ = 0.5. This
phenomenon is understandable from (2.4), since sign of Ridi, i = 1, 2, 4, may be due

to sign of −tr [(ΛΣ−1)2] + 2tr [ΛΣ−1], which is not always positive for Λ̂1, Λ̂2 and Λ̂4.

However, Λ̂3 is taken so that this quantity is always positive. This may be reason that
the values of Rid3 for ρ = 0.5 are positive and large. It is, however, noted that Λ̂3 is not
available in the case of p > n. All the values of Ridi with d = dn,p are positive and larger

than those for d = 1. These observations show that Λ̂3 with d = p is recommended for
n > p, while Λ̂1, Λ̂2 and Λ̂4 with d = dn,p are recommendable for any cases of n and p.

The simulation results for estimation of Σ−1 are reported in Table 2, which clarifies
that the performances of the ridge-type estimators of Σ−1 are quite different from those
for Σ given in Table 1. The values of Ridi, i = 1, 2, 3, for d = 1 are always positive for
n > p, but very small for p > n. In the case of n > p, Λ̂3 with d = dn,p has a relatively

good performance. In the case of p > n, Λ̂1, Λ̂2 and Λ̂4 with d = p are recommended.
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Table 1: Values of RRGi in Estimation of Σ for ρ = 0.1, 0.5, where dn,p = max(
√
n,

√
p)

and Λ̂3 is not available for p > n (values of the proposed estimators are given with
boldface)

d = 1 d = p d = dn,p
ρ n p Rid1 Rid2 Rid3 Rid4 Rid1 Rid2 Rid3 Rid4 Rid1 Rid2 Rid3 Rid4

200 80 0.8 0.8 0.2 0.7 26.3 25.4 11.3 26.6 9.8 10.4 2.2 9.1

0.1 120 80 1.1 1.1 0.2 1.0 36.7 35.4 12.1 36.9 10.8 11.6 1.8 10.1

60 80 1.5 1.6 NA 1.4 52.3 50.1 NA 51.6 12.8 13.8 NA 11.9

40 80 1.8 1.9 NA 1.6 60.9 57.8 NA 58.9 14.9 16.2 NA 13.8

200 80 1.2 2.1 0.4 1.1 −17.9 −168 20.3 −9.8 14.0 19.4 5.5 13.2

0.5 120 80 1.7 2.9 0.4 1.6 −25.1 −238 23.9 −14.6 16.0 23.6 4.4 15.1

60 80 2.4 4.1 NA 2.3 −35.8 −347 NA −23.6 19.3 29.4 NA 18.1

40 80 2.9 4.9 NA 2.7 −42.1 −418 NA −30.9 22.5 34.5 NA 21.1

Table 2: Values of RRG∗
i in Estimation ofΣ−1 for ρ = 0.1, 0.5, where dn,p = max(

√
n,

√
p),

Λ̂3 is not available for p > n and the notation ∗ denotes a very bad value beyond −100.0
(values of the proposed estimators are given with boldface)

d = 1 d = p d = dn,p
ρ n p Rid1 Rid2 Rid3 Rid4 Rid1 Rid2 Rid3 Rid4 Rid1 Rid2 Rid3 Rid4

200 80 1.7 1.8 0.4 1.6 −23.8 −26.6 7.8 −21.9 8.3 8.1 4.3 8.3

0.1 120 80 3.8 4.0 0.9 3.6 −25.5 −26.4 −1.9 −24.9 −0.7 −1.4 4.9 −0.1

60 80 ∗ ∗ NA ∗ 99.7 99.6 NA 99.7 67.8 72.9 NA 63.0

40 80 ∗ ∗ NA ∗ 95.9 95.6 NA 95.8 ∗ ∗ NA ∗
200 80 2.6 4.0 1.0 2.4 −38.3 −58.5 −4.6 −36.5 5.3 −2.1 7.4 5.8

0.1 120 80 4.7 5.3 1.9 4.6 −28.6 −33.4 −11.9 −28.1 −5.3 −11.6 4.9 −4.6

60 80 ∗ ∗ NA ∗ 99.5 99.3 NA 99.5 83.3 94.3 NA 81.1

40 80 ∗ ∗ NA ∗ 93.7 92.8 NA 93.2 ∗ −41.6 NA ∗
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7 Concluding Remarks

In this paper, we have considered estimation of the covariance and precision matrices by
the ridge-type estimators, and have derived asymptotic expansions of their risk functions
relative to the quadratic and Stein loss functions when the sample size and the dimension
are very large. These expansions clarify the conditions for the ridge-type estimators to
have smaller risks than the standard estimators in terms of the second-order terms.

The conditions for the improvement depend on the choice of the ridge function Λ̂ and
the order of d, namely, in estimation of the covariance matrix, if the following inequality
holds

(d/p)tr [(ΛΣ−1)2] ≤ 2tr [ΛΣ−1], (7.1)

then the ridge-type estimators improve on the standard estimators asymptotically relative
to the quadratic loss functions in both cases of n > p and p > n, and relative to the Stein
loss in the case of n > p. It is interesting to note that in estimation of the precision matrix,
under the same condition as in (7.1), the ridge-type estimator improves on the standard
estimator asymptotically relative to both quadratic and Stein loss functions in the case of
n > p. However, the condition for the improvement in estimation of the precision matrix
in the case of p > n is slightly different from (7.1). Although condition (7.1) always holds
asymptotically when d = 1, it depends on ΛΣ−1 in the case of d = p. In the case of
n > p, we have provided the statistic Λ̂3 which alwayes satisfies condition (7.1) for d = p.

Thus, an interesting issue is whether we can construct a statistic Λ̂ which satisfies (7.1)
for d = p in the case of p > n. We shall address this issue in a future. Various variants
of the ridge-type estimators have been investigated through the performances of the risk
functions by simulation.

Finally, it is noted that the validity of the asymptotic expansions will not be discussed
here. All the results in this paper are based on major terms obtained by Taylor series
expansions. Although this paper provides the second order approximations without the
validity, we need more conditions and many more steps for establishing the validity of the
second-order approximations.
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A Appendix

A.1 Identities useful for evaluation of moments

The following identity derived by Konno (2009) is useful. It is related to the Stein-Haff identity
given by Stein (1977) and Haff (1979) for n > p, but it can be used in both cases of n > p and
n ≤ p. Let X = (x1, . . . ,xn) be a p × n random matrix such that V = XX ′ and x1, . . . ,xn

are i.i.d. as Np(0,Σ).

Lemma 2 (Konno (2009)) Let G(V ) be a p×p matrix of functions of V . Then, the following
identity holds:

E
[
tr [Σ−1V G(V )]

]
= E

[
ntr [G(V )] + tr [X∇′

XG(V )′]
]
, (A.1)
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where ∇X = (∂/∂Xij) for X = (Xij).

In the case of n > p, we can use the Stein-Haff identity to evaluate higher moments of
W = Σ−1/2V Σ−1/2. Let G(W ) be a p × p matrix such that the (i, j) element gij(W ) is a
differentiable function of W = (wij) and denote

{DWG(W )}ac =
∑
b

dabgbc(W ),

where dab = 2−1(1 + δab)∂/∂wab with δab = 1 for a = b and δab = 0 for a ̸= b.

Lemma 3 (Stein (1977), Haff (1979)) In the case of n > p, the Stein-Haff identity is given
by

E [tr {G(W )}] = E
[
(m− 1)tr

{
G(W )W−1

}
+ 2tr {DWG(W )}

]
, (A.2)

for m = n− p.

In the case of p > n, the corresponding identity was provided by Kubokawa and Srivastava
(2008). This identity was also derived from Lemma 2 by Konno (2009). Let H = (H1,H2) be
a p× p orthogonal matrix such that

V = H

(
L 0
0′ 0

)
H ′ = H1LH ′

1, L = diag (ℓ1, . . . , ℓn), ℓ1 ≥ · · · ≥ ℓn, (A.3)

where H1 is a p × n matrix satisfying H ′
1H1 = In. Let ℓ = (ℓ1, . . . , ℓn)

′, and Φ(ℓ) =
diag (ϕ1(ℓ), . . . , ϕn(ℓ)).

Lemma 4 (Kubokawa and Srivastava (2008)) In the case of p > n, the Stein-Haff identity
is given by

E
[
tr {H1Φ(ℓ)H ′

1Σ
−1}

]
=

n∑
i=1

E
[
(p− n− 1)

ϕi

ℓi
+ 2

∂

∂ℓi
ϕi + 2

∑
j>i

ϕi − ϕj

ℓi − ℓj

]
. (A.4)

Using Lemma 4, we can evaluate the moments of tr [L−1] and tr [L−2] from above.

Lemma 5 In the case of p > n, the following inequalities hold:

E[tr [L−1]] ≤Chmax(Σ
−1)

n

p− n− 1
,

E[tr [L−2]] ≤{Chmax(Σ
−1)}2 n(p− 1)

{(p− n− 1)(p− n− 3)− 2}(p− n− 1)
,

E[(tr [L−1])2] ≤{Chmax(Σ
−1)}2 n

(p− n− 1)(p− n− 3)− 2
.

Proof. Putting Φ(ℓ) = I, Φ(ℓ) = L−1 and Φ(ℓ) = (tr [L−1])I in the identity (A.4), we get

E[tr [H ′
1Σ

−1H1]] =(p− n− 1)E[tr [L−1]], (A.5)

E[tr [L−1H ′
1Σ

−1H1]] =(p− n− 3)E[tr [L−2]]− E[(tr [L−1])2], (A.6)

E[tr [L−1]tr [H ′
1Σ

−1H1]] =(p− n− 1)E[(tr [L−1])2]− 2E[tr [L−2]], (A.7)
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respectively, where the second equality follows from the fact that 2
∑n

i=1

∑p
j=i+1(ℓiℓj)

−1 =

(tr [L−1])2. The equality (A.5) yields the first inequality in Lemma 5. Combining (A.6) and
(A.7) gives the equalities

E[tr [L−2]] =
(p− n− 1)E[tr [L−1H ′

1Σ
−1H1]] + E[tr [L−1]tr [H ′

1Σ
−1H1]]

(p− n− 1)(p− n− 3)− 2
,

E[(tr [L−1])2] =
2E[tr [L−1H ′

1Σ
−1H1]] + (p− n− 3)E[tr [L−1]tr [H ′

1Σ
−1H1]]

(p− n− 1)(p− n− 3)− 2
,

which, together with (A.5), provides the second and third inequalities in Lemma 5.

A.2 Evaluations of moments

Let W = Σ−1/2V Σ−1/2, and W has Wp(n, I) for n > p. The following lemmas provide exact
moments of the inverted Wishart matrix W−1, whereA and B in the lemmas are any symmetric
matrices. For the proofs, see Kubokawa, Hyodo and Srivastava (2011).

Lemma 6 Assume that m = n− p > 3. Let α2 = [m(m− 1)(m− 3)]−1. Then,

E[trW−1AW−1B] =α2[(m− 1)trAB + (trA)(trB)], (A.8)

E[(trW−1A)(trW−1B)] =α2[2trAB + (m− 2)(trA)(trB)]. (A.9)

Lemma 7 Assume that m = n − p > 5. Let α3 = α2[m(m − 1)(m − 3)]−1 = [(m + 1)m(m −
1)(m− 3)(m− 5)]−1. Then,

E[trW−1AW−2B] =α3(n− 1)[(m− 1)trAB + 2(trA)(trB)], (A.10)

E[(trW−1A)(trW−2B)] =α3(n− 1)[4trAB + (m− 3)(trA)(trB)]. (A.11)

Lemma 8 Assume that m = n− p > 7. Let α4 = α3[(m+2)(m− 2)(m− 7)]−1 = [(m+2)(m+
1)m(m− 1)(m− 2)(m− 3)(m− 5)(m− 7)]−1. Then,

E[trW−2AW−2B]

=α4(n− 1)
{
{(m− 1)(n− 2)− 6}[(m− 1)trAB + 2(trA)(trB)]

+ (2m+ 3p− 2)[4trAB + (m− 3)(trA)(trB)]
}
, (A.12)

E[(trW−2A)(trW−2B)]

=α4(n− 1)
{
2(2m+ 3p− 2)[(m− 1)trAB + 2(trA)(trB)]

+ {(m− 4)(n− 1)− 6}[4trAB + (m− 3)(trA)(trB)]
}
. (A.13)

Lemma 9 Let k1, k2, ℓ1 and ℓ2 be nonnegative integers satisfying k1ℓ1 + k2ℓ2 = m for m ≤ 4.
Assume that there exist limiting values of tr [Ak1 ]/p and tr [Bk2 ]/p for nonnegative definite
matrices A and B. Also, assume that tr [W−m] < ∞. Then, the moment

Mn,p = E[{tr [(W−1A)k1 ]/p}ℓ1{tr [(W−1B)k2 ]/p}ℓ2 ]

is evaluated as Mn,p = O(pn−m) for large n and p. In the special case of p/n → γ for 0 < γ < 1,
Mn,p is of order Mn,p = O(n−m).
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Proof. It is noted that

Mn,p ≤n−mE[{Chmax(nW
−1)}m]{tr [Ak1 ]/p}ℓ1{tr [Bk2 ]/p}ℓ2

≤pn−mE[tr [(nW−1)m]]{tr [Ak1 ]/p}ℓ1{tr [Bk2 ]/p}ℓ2

=O(pn−m), (A.14)

from Lemmas 6-8. In the case that p/n → γ for 0 < γ < 1, we can use the result of Bai and Yin
(1993), namely, Chmax(nW

−1) = Op(1). Thus, from (A.14), it can be seen thatMn,p = O(n−m).

Lemma 10 Assume that m = n− p > 5. Then,

E[(tr [W−1Σ−1])3] =
(tr [Σ−1])3

m3
+O(p3n−4),

E[tr [W−1Σ−1]tr [(W−1Σ−1)2]] =
tr [Σ−1]tr [Σ−2]

m3
+

(tr [Σ−1])3

m4
+O(p2n−4),

E[tr [W−1Σ−2]tr [(W−1Σ−1)2]] =
(tr [Σ−2])2

m3
+

tr [Σ−2](tr [Σ−1])2

m4
+O(p2n−4),

E[tr [(W−1Σ−1)3]] =
tr [Σ−3]

m3
+O(p3n−4).

Proof. LetD be a p×p diagonal matrix of eigenvalues ofΣ−1. LettingG = D(tr [W−1D])2,
G = Dtr [(W−1D)2], G = D2tr [(W−1D)2] and G = D(W−1D)2 in Lemma 3, we have

tr [D]E[(tr [W−1D])2] =(m− 1)E[(tr [W−1D])3]− 4E[tr [W−1D]tr [(W−1D)2]],

tr [D]E[tr [(W−1D)2]] =(m− 1)E[tr [W−1D]tr [(W−1D)2]]− 4E[tr [(W−1D)3]],

tr [D2]E[tr [(W−1D)2]] =(m− 1)E[tr [W−1D2]tr [(W−1D)2]]− 4E[tr [D(W−1D)3]],

E[tr [D(W−1D)2]] =(m− 3)E[tr [(W−1D)3]]− 2E[tr [W−1D]tr [(W−1D)2]],

respectively. These can be rewritten as

E[(tr [W−1D])3] =
1

m− 1
{tr [D]E[(tr [W−1D])2] + 4E[tr [W−1D]tr [(W−1D)2]]},

E[tr [W−1D]tr [(W−1D)2]] =
1

m− 1
{tr [D]E[tr [(W−1D)2]] + 4E[tr [(W−1D)3]]},

E[tr [W−1D2]tr [(W−1D)2]] =
1

m− 1
{tr [D2]E[tr [(W−1D)2]] + 4E[tr [D(W−1D)3]]},

E[tr [(W−1D)3]] =
1

m− 3
{E[tr [D(W−1D)2]] + 2E[tr [W−1D]tr [(W−1D)2]]}.

Further, from Lemmas 6 and 9, these third-order terms can be evaluated as

E[(tr [W−1D])3] =
(tr [D])3

m3
+O(p3n−4),

E[tr [W−1D]tr [(W−1D)2]] =
tr [D]tr [D2]

m3
+

(tr [D])3

m4
+O(p2n−4),

E[tr [W−1D2]tr [(W−1D)2]] =
(tr [D2])2

m3
+

tr [D2](tr [D])2

m4
+O(p2n−4),

E[tr [(W−1D)3]] =
tr [D3]

m3
+O(p3n−4),

which yields the evaluations in Lemma 10.
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Lemma 11 Assume that m = n− p > 7. Then,

m2

p2
E[(tr [W−1Σ−1])4] =

(tr [Σ−1])4

p2m2
+O(p2n−3) +O(pn−2),

m3

p2
E[(tr [W−1Σ−1])2tr [(W−1Σ−1)2]] =

tr [Σ−2](tr [Σ−1])2

p2m
+

(tr [Σ−1])4

p2m2
+O(pn−2),

m4

p2
E[(tr [(W−1Σ−1)2])2] =

(tr [Σ−2])2

p2
+ 2

tr [Σ−2](tr [Σ−1])2

p2m
+

(tr [Σ−1])4

p2m2
+O(n−1).

Proof. It is hard to obtain exact expressions of the requested expectations in Lemma 11. In-
stead of that, we derive the leading terms and orders of the remainder terms using the same argu-
ments as in the proof of Lemma 10. Letting G = D(tr [W−1D])3, G = DW−1Dtr [(W−1D)2]
and G = Dtr [W−1D]tr [(W−1D)2] in (A.2) gives, respectively,

E[tr [D](tr [W−1D])3]

= (m− 1)E[(tr [W−1D])4]− 6E[tr [(W−1D)2](tr [W−1D])2],

E[tr [W−1D2](tr [W−1D])2]

= (m− 2)E[tr [(W−1D)2](tr [W−1D])2]− E[tr [(W−1D)2](tr [W−1D])2]]

− 4E[tr [(W−1D)4]],

E[tr [D]tr [W−1D]tr [(W−1D)2]]

= (m− 1)E[(tr [(W−1D)2])2]− 2E[tr [(W−1D)2](tr [W−1D])2]]

− 4E[tr [W−1D]tr [(W−1D)3]].

Then, from Lemma 9, the fourth-order moments can be evaluated as

m2

p2
E[(tr [W−1D])4] =

m

p2
tr [D]E[(tr [W−1D])3] +O(p2n−3),

m3

p2
E[(tr [W−1D])2tr [(W−1D)2]] =

m2

p2
tr [D]E[tr [W−1D]tr [(W−1D)2]] +Op(n−2),

m4

p2
E[(tr [(W−1D)2])2] =

m3

p2
E[tr [W−1D2]tr [(W−1D)2]]

+
m2

p2
tr [D]E[tr [W−1D]tr [(W−1D)2]] +O(n−1).

Hence, from Lemma 10, we have

m2

p2
E[(tr [W−1D])4] =

(tr [D])4

p2m2
+O(p2n−3) +O(pn−2),

m3

p2
E[(tr [W−1D])2tr [(W−1D)2]] =

tr [D2](tr [D])2

p2m
+

(tr [D])4

p2m2
+O(pn−2),

m4

p2
E[(tr [(W−1D)2])2] =

(tr [D2])2

p2
+ 2

tr [D2](tr [D])2

p2m
+

(tr [D])4

p2m2
+O(n−1),

which yields the results in Lemma 11.
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A.3 Asymptotic properties of âi and b̂i

Lemma 12 (Srivastava (2005)) E[â1] = 0, E[â2] = a2, V ar[â1] = 2a2/(np) and

V ar[â2] =
8(n+ 2)(n+ 3)(n− 1)2

pn5
a4 +

4(n+ 2)(n− 1)

n4
{a22 − p−1a4},

where a4 = tr [Σ4]/p. That is, â1 − a1 = Op((np)
−1/2) and â2 − a2 = Op((np)

−1/2) + Op(n
−1)

for large n and p.

Lemma 13 E[b̂1 − b1] = O(n−1), E[b̂2 − b2] = O(n−1), V ar[b̂1] = O((np)−1) and V ar[b̂2] =
O(n−1) for large n and p.

Proof. It follows from (3.7) and Lemma 6 that

E[b̂1] = p−1E[mtr [V −1]−mâ1tr [(V + â1I)
−1V −1]] = b1 +O(n−1).

For V ar[b̂1], it is written as

V ar[b̂1] =p−2E[{mtr [V −1]− tr [Σ−1]−mâ1tr [(V + â1I)
−1V −1]}2] +O(n−2)

=p−2E[{mtr [V −1]− tr [Σ−1]}2]
− 2p−2mE[{mtr [V −1]− tr [Σ−1]}â1tr [(V + â1I)

−1V −1]]

+ p−2m2E[â21{tr [(V + â1I)
−1V −1]}2] +O(n−2)

=J1 − 2J2 + J3 +O(n−2).

It can be easily seen that

J1 = 2
m

p2(m− 1)(m− 3)
tr [Σ−2] +

3

p2(m− 1)(m− 3)
(tr [Σ−1]),

which is of order O((np)−1). For J3, it is noted that

J∗
3 =

m2

p2
â21{tr [(V + â1I)

−1V −1]}2 ≤ m2

p2
â21{tr [V −2]}2 = m2

p2
â21{tr [(W−1Σ−1)2]}2,

which is of order Op(n
−2) as seen from Lemma 10. Since J2 = O((pn3)−1/2), it is seen that

V ar(b̂1) = O((np)−1), which implies that b̂1 − b1 = Op((np)
−1/2).

For b̂2, it is noted that

b̂2 =p−1
{
m2tr [(V + â1I)

−2]−m{tr [(V + â1I)
−1]}2

}
=p−1

{
m2tr [V −2]−m2â1tr [(V + â1I)

−1V −2]−m2â1tr [(V + â1I)
−2V −1]

−m(tr [V −1])2 + 2mâ1tr [(V + â1I)
−1V −1]tr [V −1]

−mâ21{tr [(V + â1I)
−1V −1]}2

}
.

It here follows from Lemma 10 that tr [(V + â1I)
−1V −2] ≤ tr [V −3] = Op(n

−1). The same

arguments can be used to approximate b̂2 as

b̂2 =
m2

p
tr [V −2]− m

p
(tr [V −1])2 +Op(n

−1).
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Using Lemma 6, we can verify that E[b̂2 − b2] = O(n−1). Also,

V ar(b̂2) =
1

p2
E[{m2tr [V −2]−m(tr [V −1])2 − tr [Σ−2]}2]

+ 2E[{m2tr [V −2]−m(tr [V −1])2 − tr [Σ−2]} ×Op(n
−1)] +O(n−2).

Here, using Lemma 11, we can show that

1

p2
E[{m2tr [V −2]−m(tr [V −1])2 − tr [Σ−2]}2]

=
1

p2
E
[
m4(tr [V −2])2 +m2(tr [V −1])4 + (tr [Σ−2)2

− 2m3tr [V −2](tr [V −1])2 − 2m2tr [Σ−2]tr [V −2] + 2mtr [Σ−2](tr [V −1])2
]
,

which is of order O(n−1). Therefore, the proof of Lemma 13 is complete.

A.4 Proofs of Theorems 4 and 5

We here give proofs of Theorems 4 and 5.

Proof of Theorem 4. The risk of the estimator Σ̂Λ = c3(V + dΛ̂) is expressed as

R2(Σ, Σ̂Λ) =E[c3tr [(V + dΛ̂)Σ−1]− log |c3(V + dΛ̂)Σ−1| − p]

=R2(Σ, Σ̂0) + E[n−1dtr [Λ̂Σ−1]− log |I + dV −1Λ̂|]. (A.15)

It is here noted that for a symmetric matrix A,

log |I + tA| = ttr [A]− t2

2
tr [A(I + t∗A)−2A],

where t∗ is a constant between 0 and t. Thus, for some t∗ between 0 and 1,

log |I + dV −1Λ̂| =dtr [V −1Λ̂]− d2

2
tr [V −1Λ̂

1/2
(I + dt∗Λ̂

1/2
V −1Λ̂

1/2
)−2Λ̂

1/2
V −1Λ̂]

=dtr [V −1Λ̂]− d2

2
tr [V −1Λ̂V −1Λ̂]

+
d2

2
tr [V −1Λ̂

1/2{
I − (I + dt∗Λ̂

1/2
V −1Λ̂

1/2
)−2

}
Λ̂

1/2
V −1Λ̂]

=I1 + I2 + 2−1I3.

To evaluate I2, note that

d2tr [V −1Λ̂V −1Λ̂] =d2tr [V −1ΛV −1Λ] + 2d2tr [V −1ΛV −1(Λ̂−Λ)]

+ d2tr [V −1(Λ̂−Λ)V −1(Λ̂−Λ)].

First, from Lemma 6, it follows that

d2E[tr [V −1ΛV −1Λ]] = d2
(m− 1)tr [(Σ−1Λ)2] + (tr [Σ−1Λ])2

m(m− 1)(m− 3)
= O(d2n−2+δ). (A.16)
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Next, for the thrid term, it is noted that

d2tr [V −1(Λ̂−Λ)V −1(Λ̂−Λ)] ≤d2{Chmax(W
−1)}2tr [{(Λ̂−Λ)Σ−1}2]

≤d2tr [W−2]tr [{(Λ̂−Λ)Σ−1}2]. (A.17)

Since E[tr [W−2] = O(n−2+δ) from Lemma 6, under condition (A3), it is seen that

d2tr [W−2]tr [{(Λ̂−Λ)Σ−1}2] = d2Op(n
−2+δ)Op(n

−1+δ) = Op(d
2n−3+2δ). (A.18)

Also, combining (A.16) and (A.18) yields that

d2tr [V −1ΛV −1(Λ̂−Λ)] ≤d2
[
tr [{V −1Λ}2]tr [{V −1(Λ̂−Λ)}2]

]1/2
=d2

[
Op(n

−2+δ)Op(n
−3+2δ)

]1/2
= Op(d

2n−5/2+(3/2)δ).

Thus,

I2 = − d2

2n2
tr [(ΛΣ−1)2] +Op(d

2n−5/2+(3/2)δ). (A.19)

To evaluate I3, it is noted that

I3 =d2tr [V −1Λ̂
1/2{

2dt∗Λ̂
1/2

V −1Λ̂
1/2

+ (dt∗)2{Λ̂
1/2

V −1Λ̂
1/2

}

× (I + dt∗Λ̂
1/2

V −1Λ̂
1/2

)−2Λ̂
1/2

V −1Λ̂]

≤2d3tr [V −1Λ̂V −1Λ̂
1/2

(I + dt∗Λ̂
1/2

V −1Λ̂
1/2

)−1Λ̂
1/2

V −1Λ̂]

≤2d3tr [V −1Λ̂V −1Λ̂V −1Λ̂].

Under condition (A7), it is demonstrated that

tr [V −1Λ̂V −1Λ̂V −1Λ̂] = Op(n
−3+δ). (A.20)

In fact, it can be verified that tr [(Λ̂Σ−1)3]/p = Op(1) if tr [(ΛΣ−1)3]/p = O(1). If Chmax(nW
−1) =

Op(1) and tr [(ΛΣ−1)3]/p = O(1), then

tr [V −1Λ̂V −1Λ̂V −1Λ̂] ≤ n−3{Chmax(nW
−1)}3tr [(Λ̂Σ−1)3] = Op(n

−3+δ).

If Chmax(Λ̂) = Op(1), then tr [V −1Λ̂V −1Λ̂V −1Λ̂] ≤ {Chmax(Λ̂)}3tr [V −3] = Op(n
−3+δ). Thus,

I3 = O(d3n−3+δ). Hence,

log |I + dV −1Λ̂| = dtr [V −1Λ̂]− d2

2n2
tr [(ΛΣ−1)2] +Op(d

2n−5/2+(3/2)δ) +O(d3n−3+δ). (A.21)

Then from (A.15), we get

∆2 =dE[n−1tr [Λ̂Σ−1]]− E[tr [V −1Λ̂]] +
d2

2n2
tr [(ΛΣ−1)2]

+Op(d
2n−5/2+(3/2)δ) +O(d3n−3+δ). (A.22)

Finally, we evaluate dn−1E[tr [(nV −1Σ− I)Σ−1Λ̂]] in (A.22), which is rewritten as

dn−1E[tr [(nV −1Σ− I)Σ−1Λ̂]] =dn−1E[tr [(nV −1Σ− I)Σ−1Λ]]

+ dn−1E[tr [(nV −1Σ− I)Σ−1(Λ̂−Λ)]].
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It can be easy to see that

d

n
E[tr [(nV −1Σ− I)Σ−1Λ]] =

(p+ 1)d

n(n− p− 1)
tr [ΛΣ−1].

Also, from (2.10), condition (A3) and the same argument as in (3.1), it follows that

dn−1E[tr [(nV −1Σ− I)Σ−1(Λ̂−Λ)]] ≤
[
tr [(nV −1Σ− I)2]tr [{(Λ̂−Λ)Σ−1}2]

]1/2
≤dn−1

[
Op(n

−1+2δ)Op(n
−1+δ)

]1/2
= Op(dn

−2+3δ/2),

so that

dn−1E[tr [(nV −1Σ− I)Σ−1Λ̂]] =
pd

n2
tr [ΛΣ−1] +O(dn−2+3δ/2). (A.23)

Combining (A.22) and (A.23) gives the risk evaluation given in (4.1) in Theorem 4.

Proof of Theorem 5. The risk of the estimator cV −1 is R∗
2(Σ, cV −1) = E[ctr [V −1Σ]−

p log c−log |V −1Σ|−p, which means that the best constant c is c = p/E[tr [V −1Σ]] = m−1 = c4.

The risk of the estimator Σ̂
−1

Λ = c4(V + dΛ̂)−1 is expressed as

R∗
2(Σ, Σ̂

−1

Λ ) =E[c4tr [(V + dΛ̂)−1Σ]− log |c4(V + dΛ̂)−1Σ| − p] (A.24)

=R∗
2(Σ, Σ̂0) + c4E[tr [{(V + dΛ̂)−1 − V −1}Σ] + E[log |I + dV −1Λ̂|].

It can be seen from (A.21) that

log |I + dV −1Λ̂| = dtr [V −1Λ̂]− d2

2n2
tr [(ΛΣ−1)2] +Op(d

2n−5/2+3δ/2) +Op(d
3n−3+δ).

Also, from (A.23), it follows that

dE[tr [V −1Λ̂]] =
d

n
E[tr [Λ̂Σ−1]] +

pd

n2
tr [ΛΣ−1] +O(dn−2+3δ/2).

Further, it is noted that

d

n
E[tr [Λ̂Σ−1]] =

d

n
tr [ΛΣ−1] +

d

n
E[tr [(Λ̂−Λ)Σ−1]]

=
d

n
tr [ΛΣ−1] +O(dn−2+δ),

so that, from (A.24),

∆∗
2 =c4E

[
tr [{(V + dΛ̂)−1 − V −1}Σ]

]
+

d(n+ p)

n2
tr [ΛΣ−1]− d2

2n2
tr [(ΛΣ−1)2]

+O(d2n−5/2+3δ/2) +O(d3n−3+δ) +O(dn−2+δ). (A.25)

We next estimate the term I0 = c4E[tr [{(V + dΛ̂)−1 − V −1}Σ]]. By (3.7), I0 is rewritten
as

I0 =− c4E
[
tr [(V + dΛ̂)−1dΛ̂V −1Σ]

]
= −c4E

[
tr [(W + dΓ̂)−1dΓ̂W−1]

]
=− c4dE

[
tr [W−1Γ̂W−1]

]
+ c4d

2E
[
tr [(W + dΓ̂)−1Γ̂W−1Γ̂W−1]

]
=− c4dE

[
tr [W−1Γ̂W−1]

]
+ c4d

2E
[
tr [W−1Γ̂W−1Γ̂W−1]

]
− c4d

3E
[
tr [(W + dΓ̂)−1(Γ̂W−1)3]

]
.
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Here, from (A.20), it follows that under condition (A7),

c4d
3E

[
tr [(W + dΓ̂)−1(Γ̂W−1)3]

]
≤ nd3tr [W−1(Γ̂W−1)3] = Op(d

3n−3+δ).

Thus, I0 can be evaluated as

I0 =− c4dE
[
tr [W−2Γ]

]
− c4dE

[
tr [W−2(Γ̂− Γ)]

]
+ c4d

2E
[
tr [W−2ΓW−1Γ]

]
+ 2c4d

2E
[
tr [W−2ΓW−1(Γ̂− Γ)]

]
+ c4d

2E
[
tr [W−2(Γ̂− Γ)W−1(Γ̂− Γ)]

]
+Op(d

3n−3+δ).

Since E[W−2] = (n− 3)/{m(m− 1)(m− 3)}I, it is observed that

c4dE
[
tr [W−2Γ]

]
=

(n− 3)d

m(m− 3)
tr [ΛΣ−1],

c4d
2E

[
tr [W−2ΓW−1Γ]

]
=

(n− 1)(m− 1)d2

(m+ 1)m(m− 3)(m− 5)
tr [(ΛΣ−1)2] +O(d2n−3+2δ),

where the second equality follows from Lemma 7. Also, from (A.18),

c4d
2tr [W−2ΓW−1(Γ̂− Γ)] ≤ c4d

2
[
tr [(W−2Γ)2]tr [{W−1(Γ̂− Γ)}2]

]1/2
=Op(d

2n1+(−4+δ−3+2δ)/2) = Op(d
2n−5/2+3δ/2).

Similarly to (A.17), it can be verified that

c4d
2tr [W−2(Γ̂− Γ)W−1(Γ̂− Γ)] = Op(d

2n−3+2δ).

Finally, we evaluate the term c4dE
[
tr [W−2(Γ̂− Γ)]

]
. It is noted that

c4dE
[
tr [W−2(Γ̂− Γ)]

]
=

(n− 3)d

m(m− 3)
E
[
tr [(Λ̂−Λ)Σ−1]

]
+

c4d

m(m− 1)
E
[
tr [

{
m(m− 1)W−2 − n− 3

m− 3
I
}
(Γ̂− Γ)]

]
.

Clearly, (n − 3){m(m − 3)}−1dE
[
tr [(Λ̂ − Λ)Σ−1]

]
= O(dn−2+δ). Using Lemma 8, we can see

that E[tr [{m(m− 1)W−2 − (n− 3)(m− 3)−1I}2]] = O(p2/n), which implies that

c4d

m(m− 1)
tr [

{
m(m− 1)W−2 − n− 3

m− 3
I
}
(Γ̂− Γ)]

≤Op(dn
−1+(−1+2δ−1+δ)/2) = Op(dn

−2+3δ/2),

where the Cauchy-Shwartz’ inequality is used. Thus,

I0 =− (n− 3)d

m(m− 3)
tr [ΛΣ−1] +

d2

n2
tr [(ΛΣ−1)2] +O(d3n−3+δ)

+O(d2n−3+2δ) +O(d2n−5/2+3δ/2) +O(dn−2+3δ/2). (A.26)

Combining (A.25) and (A.26) gives

∆∗
2 =

{
− (n− 3)d

m(m− 3)
+

d(n+ p)

n2

}
tr [ΛΣ−1] +

d2

2n2
tr [(ΛΣ−1)2]

+O(d3n−3+δ) +O(d2n−5/2+3δ/2) +O(d2n−3+2δ) +O(dn−2+3δ/2),

which yields (4.2) in Theorem 5.
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