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Abstract

This paper proposes a general approximation method for the solution to a second-order parabolic par-
tial differential equation(PDE) widely used in finance through an extension of Léandre’s approach(Léandre
(2006,2008)) and the Bismut identiy(e.g. chapter IX-7 of Malliavin (1997)) in Malliavin calculus. We present
two types of its applications, approximations of derivatives prices and short-time asymptotic expansions of
the heat kernel. In particular, we provide approximate formulas for option prices under local and stochastic
volatility models. We also derive short-time asymptotic expansions of the heat kernel under general time-
homogenous local volatility and local-stochastic volatility models in finance, which include Heston (Heston
(1993)) and (A-)SABR models (Hagan et.al. (2002), Labordere (2008)) as special cases. Some numerical

examples are shown.

Keywords: Malliavin calculus, Bismut indentity, Integration-by-parts, Semigroup, Asymptotic expansion,
Short time asymptotics, Heat kernel expansions, Derivatives pricing, Stochastic volatility, Local volatility,
SABR model, A-SABR models, Heston model

1 Introduction

This paper proposes a new method for the approximation to the solutions of second-order parabolic partial
differential equations (PDEs), which has been widely used for pricing and hedging derivatives in finance since
Black and Scholes (1973) and Merton (1973). In particular, we derive an approximation formula as Theorem
2.1 based on an asymptotic expansion of the solutions to the second-order parabolic PDEs by Léandre’s
Approach (Léandre (2006, 2008)) and an application of Malliavin calculus effectively: the approximation
formula is derived through an extension of Léandre’s “elementary integration by parts formula” (Theorem
2.2 in Léandre (2006)) presented in Proposition 2.1, and an application of the Bismut identity (e.g. chapter
IX-7 of Malliavin (1997)). Also, this derivation can be regarded as an extension of the PDE weight method
in Malliaivn-Thalmaier (2006) to an asymptotic expansion of the solutions of the PDEs. As for explanation
of Léandre’s approach and its connection with our method, please see Takahashi and Yamada (2010).

Moreover, our method has an advantage in a sense that our computational scheme can be applied in a
unified way to obtaining derivatives’ prices and Greeks under various (multi-dimensional) diffusion models.

In addition, we apply this method to deriving a short-time asymptotic expansion of the heat kernel under
the general diffusion setting which includes general time-homogenous local volatility, Heston and (A-)SABR
models as special cases; for the local volatility model, we also show how to compute the coefficients in the
expansion by using the Lie bracket. Furthermore, we note that the similar method can be applied to a
certain class of non-linear parabolic partial differential equations though this paper explicitly deals with the
linear PDEs. (Please see Remark 2.1.)

There are many approaches for approximations of heat kernels through certain asymptotic expansions:
for instance, there are recent works such as Baudoin (2009), Gatheral, Hsu, Laurence, Ouyang and Wang
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(2009), Ben Arous and Laurence (2009), Ilhan, Jonsson and Sircar (2004), Takahashi, Takehara and Toda
(2012) and Takahashi and Yamada (2012).

Related to our work on approximation of the solutions to second-order parabolic equations and its
applications to option pricing, Cheng et al. (2010, 2011) have been developing a new method called Dyson-
Taylor Commutator method. Moreover, Kato, Takahashi and Yamada (2012) has developed an asymptotic
expansion for solutions of Cauchy-Dirichlet problem for second-order parabolic PDEs; as an application,
they have derived a new approximation formula for pricing barrier options under stochastic volatility setting.
(Please see Remark 2.2 and Remark 3.1 below.) Furthermore, Fujii and Takahashi (2011) has developed a
new approximation method for the solutions to the nonlinear PDEs associated with the four step scheme
for solving forward backward stochastic differential equations (FBSDEs).

The organization of the paper is as follows: the next section derives an integration by parts formula as
an extension of a Léandre’s theorem and then provides an approximation to the solution of second-order
linear parabolic PDEs. Section 3 applies the method developed in the previous section to finance; we derive
approximate formulas for the option price and vega under local/stochastic volatility environment. Section 4
derives a short-time asymptotic expansion using integration by parts formula. Section 5 shows examples of the
short-time asymptotic expansion under general time-homogeneous local volatility, stochastic volatility model
with log-normal local volatility and general local-stochastic volatility models. We also provide numerical
examples of the short-time asymptotic expansion under Heston model.

Finally, Appendix summarizes the calculation of the second order approximation in Section 5.1.

2 Integration by Parts Formula and Asymptotic Expansion
of the Solution to Parabolic PDEs

Léandre (2006, 2008) reveals the connections between the semigroup theory and Malliavin calculus. In
particular, his “elementary integration by parts formula” (Theorem 2.2 in Léandre (2006)) provides a nice
idea for an approximation of the solutions to second-order parabolic PDEs.

In this section, we will extend Léandre’s “elementary integration by parts formula” to Proposition 2.1
below, and present an approximation formula ((2.20) in Theorem 2.1) of the solution to a second-order linear
parabolic partial differential equation:

Let X() be the unique solution to the following n-dimensional perturbed SDE: for € € [0, 1],

d
dx{? = > Vi(e, X[7) 0 dW + Vole, X{7)dt, (2.1)
k=1
Xo = xE Rn,
or
d
dx(? = > " Vile, X[N)dW + Vo(e, X[V, (2.2)
k=1
Xo = zeR",

where Vi, = (Vi,---, Vi) (k=0,1,---,d) have bounded derivatives of any orders in the variables (¢, z) and

n d

i i 1 i

Vo(e,z) = Vo (e, x) + 5 lz 2 Vi (e, as)Vkl(e,ac).
—1 k=1

19}

Here, “o” indicates the stochastic differential in the Stratonovich sense.
Also, consider the following n x n matrix-valued process, {U\°) : (U;E)’Z(t))7 1<4,5<n,0<t},

d n n
dUitt) = YOS AL U () o dWi 4D B (s)US (s)ds, (2.3)

1=1 k=1 =
Uit = o,
where
AL = (e X0,
B,(;)’i(s) = 8kVoi(6,Xs(e))



and &} is the Kronecker’s delta, that is er) = I(the identity matrix). Specifically, for Ut(o),

AN s) = [0V, XN]|
BOMs) = [0V, XN)]| -
Let
€ a €
XM= &Xg ).
Then, we have
+ d
X9 = Uﬁ/ (U™ (Z 8 Vie(e, X$9) 0 dWF + 85\/{)(67X§€))ds> , (2.4)
0 k=1
where 0. means %. In particular,
0 (e
xV o= XM= EX}’ .
d
1
- o [ ) (Z [0V X |y 0 dWE + [0Va(e X od5>
0 k=1

Next, let ae(s)fC7 1<i<n,1<k<d, be the process;
a’(s)i = (U(s) " Viele, X{V))".

Then, the reduced Malliavin covariance %<E)(t) = {(VE(t))7}4,; is expressed as

d t
(V@)Y = Z/ a“(s)pa(s)lds. (2.5)
k=170
Throughout this section, we assume the following non-degeneracy of the reduced Malliavin covariance:
[A1] sup E[(det(V ) (£))) "] < oo for 1 < p < . (2.6)
e€(0,1]

Then, by Theorem 9.2 in Ikeda and Watanabe (1989), we obtain a smooth density, y — p°(t, z,y) associated
with (2.1)((2.2)). Moreover, according to Remark 2.2 and Remark 2.3 in Watanabe (1987) as well as
Proposition 2.2 in Ikeda and Watanabe (1989), we can see p(t,z,y) is smooth in z and € as well.

We next define V,f as

VI;:ZVIJ(€>'T)8%7 k:0717"'ad-
=1 ’

and
1
S S en
k=1
Next, for f € Cp(R"™), let
W)= Pif@) =B 1) = [ 1o (2.7)
RTI,
Then, u(¢,x) is the solution to the following PDE:
(2 - £E> u‘(t,z) = 0 (2.8)
8t ) - ) .

u(0,2) = f(a).



Also, let

W(t2) == POf@) =B [FX)| = [ (. y)dy, (2.9)

R”

where p°(t,,y) is the smooth density for (2.1) with ¢ = 0. Then, u°(¢,x) is the solution to the following
PDE:

(% — ﬁo) u(t,x) = 0, (2.10)
f(@).

u®(0, )

2.1 Integration by Parts Formula

In this subsection, we will give the formula for u'(¢,z) = %u“)(t,w)tzo, and show that u'(t,z) satisfies
the following PDE:
0 0) . 1 _ 10
En L )u (t,z) = Lu (tx), (2.11)
u'(0,2) = 0,
where
9 1 0 o
L= —Lf = = — [Vi(e,2)V! — 2.12
86 —o 2 Z 66 [ k(€7m) k(67x):| —o 8$16$J ( )
i,7=1 k=1
—~ 9, 9
—W .
+ — Oe 6(e,) e—0 O;
For X; € D3, we denote D; 1, X; as the Malliavin derivative acting on the Brownian motion Wk k=1,---,d.

(Please see p.97 in Takahashi and Yamada (2012) for the details.) Then, we obtain the following proposition.
Proposition 2.1 Let ¢®W(t) be the process given by

l
OOy = (V*O(t)*lUO(t)*Xfl)) L 1<i<n.

Then, the following formula holds:

e a:>—/ PO LU [P f](2)ds = (213)

F(X) ZZ{ oWy / ao(s)idWsk*/ Ds,kCO’(1>(t)lao(s)fcds}] = (2.14)
I=1 k= 0 0

F@)w()p® (¢, =, y)dy, (2.15)

where y — w(y) is a smooth function given by

n

d t t
ZZ{ Ot [ ahaw - [ Ds,kcm(”(wla(’(s)zds}|X§°>=y1.
=1 b1 0 0

(Proof)
Let {fn}n C Cy°(R™) be a sequence such that f, — f as n — oo. For E[fn(Xt(e))], we can differentiate
with respect to € (and set € = 0) as follows;

9 (©
9l OE[fn(Xt )

©y 9 }
ZE[ X )anit =0




= B[VH(x)- x|

- E [an(X“”) : Utvf(t)vf(t)*lUglxt“)}

= 222"
O u(x) / 3 VLUV ) W V(K O) as (vemy o x®)
i=1 1=1 k=1 Oz m=1

= ZZZEL;; W2 (2o X
DI PIERIOR (Z / t(Uslvk<X§°>>>m<Us1vk<xé°)>>lds> ((v;’(t»lUHXf”)l]
DO
= ZZZE[aizfn X" / (w ()US1vk<X£0>>>i(Us1vk<xé°>>>‘ds(<v£<t>>1U#X§”)l}
/ t Z o (XY OOU ) (20 v X ) <Uslvk<xé0>>>’ds]

1=1 k=1
= SB[ [ D ot
I=1 k=1
In the above equality, U = U°, and we used the following relation.
(0) (0> -1 (0)\\i
s k:fn Z Gr )Us Vk(Xs )) .
For g= (gla e agn)a gl = fn(XISO))CO’(l)(t) we have
n d t n d +
ZZE[gl/ dwk}:zz {/ skg'a’ s)ﬁgds},
=1 k=1 0 1=1 k=1
and
Doig' = Dl fa(X{)¢"D (1)) = [Doi fu (XN @) + fu(X ) Dei™ D ()]
Then,

Sy [/ Daefn X<°>>}<°’<”<t>la°(s>§€d5}

=1 k=1
t t
ZZE[M)(P)){@W@V [ anaws - [ Ds,kc°’<”<t>la°<s>zds}}.
=1 k=1 0 0
Therefore, we obtain the following formula.
P n d t t
€ 0
= Elfa(X{)] = DD B0 [ a()idWE = [ Dox¢” P () a(s)ids
Oele=o 1=1 k=1 0 0
= Fn@)w()p® (¢, 2, y)dy,
R’Vl
where
n d t t
=E ZZ{ G / o (s)hdW! — / Ds,kqo’“)(t)la"(s)ids}|X£0>—y ,
=1 k=1 0 0

The following estimates hold:
| B[ (X)) = Elfa(X < IIf = falloos
o B - BUACCO)| <1 = Sallelinlsn,

Oe

5



where

—ZZ{ SNC / a’ ()i AWy — / Ds,kCO’“)(t)laO(s)kds}.
=1 k=1 0

Therefore, we obtain as n — oo,

) = o] ERE)
= ZZE[ X% {c‘*“)(t)l / a® (s)dWf - / Ds,kcf)v“)(t)laf’(s)zds}]
=1 k=1 0 0
= F)w(y)p® (¢, z,y)dy.

Alternatively, let 25 = P_ P¢f(z). Then, we have

Pif(z) —P{f(z) =5, — Zo = / d —(Es)ds = //P?,S[EE — LO)PS f(z)ds
0 ds 0

Hence, using (2.12), we obain

ul(t,m):%uﬁ(t,x) = lmg L[Psf(r) - PUF ()] (2.16)
= 16%16/0 Py, [£°— L°] PSf(x)

Also, we easily see that

t t
% ( / P?SL:IPSf(x)ds) =r / P} L'PLf(x)ds + L'PY f(x),
0 0

and hence, F(t,z) f PY_.L'PYf(x)ds satisfies (2.11) with starting condition 0.

2.2 Asymptotic Expansion

Let H(l)(Xt(e)’z, ) : Do — Do be the divergence operator (Malliavin weight) defined by the Bismut identity
(pp.247-248 in Malliavin (1997)):

Hey (X", w ZZ{ / €(s)gdwf—/ D k() a(s)ids| (2.17)

i=1 k=1

where W, is a smooth functional in the Malliavin sense, ¥; € Do, and
C) = (VE) U () T )
The iterated Malliavin weight Hy is recursively defined as follows:
Hy(X{", W) = Hony (X7, Hyooa (X0, 04)),

with
Ho(X " W,) = v,.

The next theorem is our main result in this section.



Theorem 2.1 Consider the following PDE with its initial condition f € Cp(R™):

0
= L) uf = 2.1
((’)t E)u(t,a:) 0, (2.18)
u(0,z) = f(x).
Then, its solution
W) = Pif@) =B [1X)] = [ s e (2.19)
has an asymptotic expansion in R.:
N
Pif(z) = {P?f(m) + Z eﬂaj(m)} + 0N, (2.20)
j=1
where
a;(z)
J
= Z Z (2.21)
k=1 B1+-+Br=7,8;>1
/ / / P} LOP) % PY L, LOPY f(x)dty - dtadt
[€))
= l X0y ZHk (x (O ngfjl (2.22)
= F)w; (m)p° (t, =, y)dy,
R'Fl
with £ = L4 r¢)_o, k €N, and
() R 1
> = > W
k k=1 1+ +Br=7,8;>1

Here, the so called Malliavin weight H;C(Xt(o)’x7 Hle ngjl) is defined by (2.17) and the push-down of the
Malliavin weight w; € S is given by

(4)

ZHk (X ngl‘;"lnxm =y, (2.23)
=1
where Xi(to)’k = kl, ;kk X( )|6 0, keEN,i=1,---,n. Moreover, we obtain a heat kernel expansion in R.:
N
ptzy) = p(tay) Z O(t,,y) + O(N ). (2.24)
(Proof)
We can recursively apply the integration by parts in Proposition 2.1
7 1 8] € 0
w(tr) = So=Pif(@)le=o= [ f)w;y)p (¢ 2,y)dy,
jl 0e Rn

where

()
w; (y [Z Hyu (X" HX“ A x O = ]



Then, we have
N
Pif(z) = PYf(2)+ Y _€u'(t,x) + ' Ru(e).
j=1

where the remainder terms R (€),

1 (1 ) (N+1)
—v €v €v €v
RN(G) = / 4]\][ [ ( ) Z H ( ) HXélt) ﬂl dv,
0 :

which satsfies
E[[Rn (o)) < C(D) | fllw E[(det (V7 () 717 < oo,
for some C(T),~, . (See P.102 in Nualart (2006) for instance.)

Alternatively, we can recursively obtain the following expression of u? (¢, ) in the similar way for obtaining
(2.16) in the proof of Proposition 2.1:

t z) Z Z / / / Py tlﬁ Ptl to £ .. Ptk - tk‘C Ptkf( 2)dty - - - dtadty.

k=1 B1++Br=74,8;>1

Also, it is easily seen that u’(t,z) satisfies the following equation:

(5= ) wta) = £ (02) o+ L0 1,)

Moreover, if we take a sequence {fy}nen such that f, € S, fn, — §, as n — oo, we have
P:fn(fl?) =S’ <fn7p€(t7x7 )>5 - & <6y7p6(t7x7 )>5 = p€(t7 Z, y): n — 00.

Then, the following heat kernel expansion holds :

N
Ptz y) =" (e y) + > Ew)p’(ta,y) + OV ),

j=1
Therefore, we obtain the results.

Remark 2.1 Let us consider the solution of the PDE:

o] € € _
(?—t+c )u(t,x) =0, (2.25)
u (T, z) = f(x).

Suppose u®(t,x) is expanded by a perturbation method as

u(t,z) = u(t, ) + eu' (t, ) + EP(t, )+ -

In order to obtain u'(t,x), i = 0,1,2 for instance, we formally expand the PDE:

(c’?t +L° vl + L7+ )(uo(t,x)+eu1(t,x)+62u2(t,x)—|—~~) =0,

i 19'c¢
where L' = 3 o le=0-

Then, u'(t,z), i = 0,1,2 satisfy the following PDEs:

{(W+ﬂ>wm—m
(T, z) = f(z),
{ ( t +£0) ( ) = _‘Cluo(t,x)v
(T,z) =0,
{ ( it ‘CO) (t7x) = _(‘Clul(tvx) —|—£2u0(t,x))7
(7,2) =0,



Theorem 2.1 provides a solution to this problem. We note that the same method can be applied, at
least formally to a certain class of non-linear parabolic partial differential equations although Theorem 2.1
explicitly deals with the linear ones. A simple example is as follows:

(00 + LY (b,2) =0, (¢ < T); u(T,2) = () (2.26)
L= %O’(Ué, 8@”6)28115 (227)
o(uf,0;u) = 1+ e(u® + dguc), (2.28)
In this case, we have
1
0 _ —
L= 2811,
£ = (u(t, ) + 0uu’(t, 2))Ouar,
L= % {0t 2) + 0uu (1, 2)) + 2(u’ + 0pu') } D
Hence,
(0 + 50ua)u’(1,2) = 0; 4 (T,) = f(2), (2.29)
(0: + %Bm)ul(t, z) = —(u’(t, z) + 0’ (t, 2))Beeu’ (¢, z); u'(T,z) =0, (2.30)
(0 + %&m)uQ(t, z) = —(L'u' (t, ) + L2 (¢, 2)); (T, x) = 0. (2.31)

u®(t,x) is easily solved by (2.29):

—(z—=)2

e 2T=1 f(z)dz.

0 I 1
wihe) = /_oo\/27r(Tt)

Then, given u®(t,x), the right hand side of (2.30) is easily computed and so u'(t,x) is solved, too:

ul (t, .7)) — E(t,%) |:/T g(s, Ws)d8:| (232)

T oo 1 —(z—x)?
= ——————¢ 269 g(s,2)dz | ds,
[ /,oo \/27(s — 1)

where
g(s,2) = (W(s,2) + 0su(5, 2))Prati(5, 2).

Recursively, given u°(t,x) and u*(t,z), u*(t,x) is obtained by (2.31).

Moreover, please see Fujii and Takahashi (2011) for the details, which has developed a new general
approximation method for the solutions to the nonlinear PDEs associated with the four step scheme for
solving forward backward stochastic differential equations (FBSDEs).

Remark 2.2 If we try to derive the closed form approximation of the solution to Cauchy-Dirichlet problem
for second order parabolic PDEs, which is an expectation including the exit time T of a domain D such as
E[f(Xt)1{r>y], the Malliavin calculus approach fails because Malliavin derivative Dy does not exist (see
Fournié et al. (2001)). Therefore, we cannot approxzimate analytically the solution to Cauchy-Dirichlet
problem by applying the Malliavin’s integration by parts (2.22). However, Kato, Takahashi and Yamada
(2012) has developed an asymptotic expansion for solutions of Cauchy-Dirichlet problem for second order
parabolic PDEs and showed a similar formula as (2.20) with (2.21) still holds.

3 Perturbations around Closed Form Solutions : Application
to Options

In this section, we derive approximation formulas for an option’s vega and price in local/stochastic volatility
models using the expansion methods of semi-group developed in Section 2. Hereafter, we use the notation
J T(z)p(z)dx for T € S'(R™) and p € S(R") meaning that s/ (T, p)s.



3.1 Vega Weight

Fournié et al. (1999) derive the greeks weights using Malliavin calculus. In this subsection, we obtain the
Malliavin weight for the plain-vanilla option’s Vega(Vega weight) by the Bismut identity and show how to
derive the analytic approximation of option price using the Vega weight. Let us consider the following asset
price dynamics:

dSt = U(St)th7 (31)

where Sy is a constant and o(z) > 0. We also consider the perturbed diffusion with ¢(®) (z) = o () + €5 (),
where 6(x) = ¢ o(z) for some positive constant c :

dsl? = o9(5awy, (3.2)
S8 = 8.
Then, the vega of the plain-vanilla (call) option is defined as

9 e
vega™V = &E[(S(T) — K) 1] ezo. (3.3)

Under appropriate conditions, vega™ is given by

vega™’ E [8(S<To> - )+§ S( |e= } (3.4)

E [(Sg)) ~ K)"Hq, (S(TO), 55<6 |e= )}
- / (= = K)"9()p® (T — t,5,2)dz,
R

where H(1) (S(TO), 515(6) |e= 0) is the Malliavin weight for vega®™"’, ¥(2) is its push-down, and pS(O) (T —t,s,2)

is the density function of S(T) given St(o) =s.
Hence, a European call option price for its underlying asset price S (©) with maturity 7" and strike K is
approximated as follows:

C(T —t,5,K) = Ey.4[(SY) — K)*]
~ / (z — K)+ps(0) (T —t,s,2)dz + € - vega®™", (3.5)
R
where we assume zero interest and dividend rates.

We illustrate this by using a simple case, 0 (2) = (o + €)a:

dsl? = (o +€)S9dws, (3.6)
S = 8.

The logarithmic process of St(e) is given by,
© _ 1 2
dX, = (o4 ¢€)dW; — 5(0 + €)dt.
X(()e) = log So.

The associated partial differential equation is given by

(0 + LYu (t,z) = 0,

where £° is the generator of X\, i.e

and f € Cy°.

10



The Vega is calculated in the following way. Let us consider the process,

dU, = oUudW,,
U, = 1.

and introduce the process a(u),
a(u) =U; oS,
with
S0 — seo(Wu*Wt)*%Jz(u*t).

Let C(T) be the reduced Malliavin covariance,

c(T) = /ta(u)2ds:/t (SZO)USSP)) du = (so)*(T —t).

Next, we differentiate the underlying asset price at time T" with respect to € at € = 0:

e
asmezo = SOWr —W, —o(T —t)).
We define the process €™M () and ¢>®(t) as
10 e
Oy = UTlaS§F>|6:0 = ﬁsﬁ”(WT — W, — (T — 1)) = s(Wr — W, — oT),
T
0,(1) — ~1,£0,(1) ¢y 1 Wi — (T —
¢CHAT) = C(T) (T = o2 (T = t)(WT Wi —o(T - t)).

Then, the Malliavin derivative of ¢%M)(¢) is given by

1
Du,1g0,(1)(T) = ) licu<T.

sa?(T —

By the integration by parts derived in section 3.2, Vega is calculated as follows.

9 e
e Fenl(57) = K)Flemo

T T
= Euq (8% - K)* {(O’“)(T)/ a(u)qu—/ Du,lgo’“)(T)a(u)duH
T

= Egq (S(TO) _ K)+ {W(WT - Wi —o(T — t))/ sodW, —/t Msadu}]

t

_ ©) _ jry+ 1 w2 —wy oL
- E(taS) _(ST K) {O’(T—t) (WT Wf) (WT Wt) O'}:|
B 1_2 2
. 1 , 1o 1 7(27“20 (T—1))
= (e —K)'E |:W —Wr_y — =|X72 :z] ——¢ 20%(T—1) dz
/R ) o(T —1) e ' U‘ r 2wo2(T —t)
1 7(zfm7%02(T7t))2
= / (ez — K)+’l9(2)76 202 (T—t) dZ,
R 2mo2(T —t)
where
¥z) = E — L owr, W, - 1|Xt’z =z (3.7)
o o(T—t) " gt = '
_ 1 1 5 21 1 5 ) 1
= ST (z—x—|—20 (T—t)) —U(z—x+2g (T-1) -

E(quivalently, we can calculate Vega by differentiating the semi-group. Recall that £(°) is the generator
of X\,

e 1 N )
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We define the differential operators £°, £ as follows;

o _ 1a(0* 0
L= 27 (8x2 81:)’

N Rl
L= 86£ =0 = <8w2 - 81:) '

Using semi-group theory, the Vega is given by

ul (t, 7)] =0

t[' PT uf( )

8

/ / / X(O) —t,x,y)o (36‘1/2 _ ;y) px<0) (T — u,y, 2)dyf (e*)dzdu

/ (aa ) / / X =2,y (T — .y, 2)dyf (e )dzdu
T (0)

< > (axQ 81:) / fle —t,x,2z)dz

= (T-uc! / f(ez)pX(O) (T —t,z,2)dz.
R

Note that
Cr%pxm)(T—t,m,z)
S
- Qﬂ(;_t)aexp{—%%;_t)(z—x—l— ;JQ(T—t))Q} m(z—x—i— %JQ(T—t)),
and
ai;pmm (T —t,z,2)

? 1 1 1, 2
= wimr(Tft)a eXp{_ch?(Tt) (Z—J:-l—ia (T—t)) }

1 1 - .
- = amry (et o)}

1 1, 2 1
X{<02(Tt)(z_x+2a (T—t))) _oz(Tt)}'

Then, we obtain

9 (e
ot ) o

2 x(0) z—x+ 30°(T — 1)) 2 1 (zfx+%02(Tft))
= "(T_t)/Rf(e)p (T_t’x’z){< o2 (T — 1) >_02(Tt)_ (T — 1) }dz

/Rf(ez)pX(O)(T—t,x,z) {03(1}_15) (z—a:—|— %O’Q(T—t))z - % - % (z—a:+ ;UQ(T—t))}dz.

We obtain the Malliavin weight for the Vega,

e (-t 57 @=0) ==L (- 5o’ 0).

Wz) =
(3.8)

Finally, we remark that the Vega we have just evaluated is equivalent to the well-known Black-Scholes Vega.

12



3.2 Pricing Options under Stochastic Volatility Model

This subsection derives an approximate solution of the partial differential equation (PDE) in stochastic
volatility model by a perturbation method. We consider the following stochastic volatility model (St, o¢):

ds'? = o{989aw ,,
dO’EE) = 6056)(de1,t + ﬂdWQ,t),
So =5 >0,
op = O'(()O) > 0,
where € € [0,1]. The purpose of this subsection is to evaluate a European option price:

CSV(T —t,8,K) = E(t,s)[(S(T€> — K)*], given S\ = s.

Let (Xt(a) denotes the logarithmic process of the underlying asset (S,ge)). We also define

Pif(z) = E[f(X{"), [eC,
and a generator
2 2 2
@_120 1,0 2 0 21 29
L7 = 27 922~ 27 oz tepo 0z0o te 27 o2

We decompose the generator in three parts, i.e.

L£6=L0+eLq + L7,

where
0 120" 1,0
27 9z 27 Az’
62
1 2
L= po 0zdo’
2 158
LY = 57 Pk

(3.9)

Note that Lo is the (logarithmic) Black-Scholes operator. For f € C3°, u(t,x) = P5_,f(e”) satisfies the

following PDE:

{ (2 + L) u(t,z) =0,
u(T,z) = f(e”).

Let (U.) be the first variation process defined by U, := %Sfto), i.e.

AUy = UwoPdWi .,
U = 1,

and C(T") be the reduced Malliavin (co)variance of St(é) at e =0, i.e.,
T
C(T) = / a(u)?du,
t

where
a(uw) = (U.) 'el®8.

We introduce the following expressions:

0 9" 4o
SkT = %ST |€:07
k
() = wn) [,
i=1
gO,(ﬁl,---,ﬁk)(T) — C(T)—1€07(517"'76k)(T)7

13
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where §; > 1 satisfy

k
> Bi=j, jEN, 1<k<j.
=1

Theorem 3.1 For f € C§°, we have an asymptotic expansion of the solution to the PDE (8.10) :
Pr_.f(e*) =

N J T T T
P7_.f(e) +Ze] Z/ / / P?kj_tﬁ’g’“j P LPPT L f(€F)dty, - diadty + O(N T =
=1 t tq tr

N
I i (0)
Pg“ftf(e ) + E ¢ / f(ey)wj(taT7x7y)pX (Tftw/l"ay)dy‘i»O(ENJﬁl)v
=1 7R

where

J

>

1
w;(t,T,z,y) = ﬁE[ﬁ§2;|X;O)’t’x:y],

J
0 By
IS SR
k=1 1+ +Br=3,8;>1

T T
01 (¢O P P(T)) = CO’(ﬁl"“’B’“)(T)/ a(u)dwl,u—/ (D1 ¢ P56 (1)) au)du,

> ,

B+ By =5, Bi=10r2,k; >1

,ﬂk(coa(ﬁla‘“aﬁk)(T)) _ ,ﬁloﬂk71(<07(617“‘1ﬁk)(T))7

and px(o) (t,z,y) is the transition density of X© gnd PO is the Black-Scholes semigroup with the generator
L0,

(Proof)

Under the condition of oy = U(()()) > 0, P5_,f(e”) has an asymptotic expansion around ¢ = 0. The result
follows from Takahashi and Yamada (2012). The expansion coefficients are obtained by the following way.
The limiting (e®-order) term, P%_, is the (logarithmic) Black-Scholes semi-group with the generator £°.
The coefficients of the asymptotic expansion of the solution to PDE are calculated as following way. First,

8 € xT !
5P f(@)e=o = Bl (55)51r]

= Euolf (S Urc(T)c" M (1))

By the chain rule of Malliavin calculus, for u € [t, T], we have

Dupf(SY) = f(SUrU oD 5,
Du2f(S§") = 0.

Then, following the same way in the proof of Proposition (2.1), we obtain

0

5 Prtf(€)e=0 = E { / {[Pu F(SFIC (T b (w)du |

Note that, for u < T,

D { SV (@)} = Duaf (SN (@) + £ DD (@)

By the integration by parts formula,

B U {[Du,lf(Sg)))Ko’”)(T)}a(U)dU]

_ E{f(exé(])){co’(”(T) / ()W — / [Du,1<°v<“<T>]a<u>duH,
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and we obtain

S

T T
/ e [0“( ) / ()W o / (D O (Da(w)dul X = y| 5 (t,2,y)dy.

The higher order approximation terms of the expansion is given as follows;

- 10" . 2 @ ©
W (tx) = 5o P f(€)emo = /f B X0 = ylp™ (T = t, 2, y)dy,

where 19(?) € D«. Then, we obtain an asymptotic expansion formula of the solution to PDE of the stochastic

volatility model around the Black-Scholes solution,

N
Pi_ f(e") =Po_ f(e") + > _ &l (t,z) + O(" ).

j=1

u? (t, x) satisfies

(§t+£0> ite) = —LW'\(ta) - L2921, 2),

o’ (T, x)

|
I

Therefore, we have

J T T T
x) = Z/ / / P?kj_tcf’kj o LPPY LOPT L f(e7)dt, - dbadty.
t t1 te—1

Specifically, Corollary 3.1 below derives the first order approximation formula of Furopean option under

the stochastic volatility model.

Corollary 3.1 The following approximation formula holds.
CV(T —t,e", K) = CP3(T —t,e", K) + €C1(T — t,e", K) + O(€%),

(3.11)

where CBS(T —t,2,K) denotes the Black-Scholes European option price (with time-to-maturity T — ¢, spot

price z and strike price K) and

Ci(T —t,e”) = / (e — K)Twi(t, T, =, z)pxm) (T —t,x,2)dz (3.12)
R
= (T;t)paoemn(dl)(—dz),
with
wi(t, T, z, z)
- (T — t)? ((z —z+ 30°(T —t)° C3(z-az+ 10*(T —1)) (=4 10%(T —1))? 3 1
2 (@*(T = 1)) (0*(T = 1)) (0*(T —1))? o*(T — 1)
g = log (e”/K) 4+ og(T —t)/2
! g0 T—t ’
ds = dy — ov/T —1,
1 —d;
n(ds) \/—WGXP< 5 )
(Proof)
By Theorem 3.1 ,

a € T
EPT—tf(e )e=0

T
/ P, L'PT_,f(e")du

/f {om( )/tT a(u)dleu_/tT[Du’ICO,(l)(T)]a(u)du|X7(H0),t,x_

15
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The conditional expectation above is evaluated as follows;

T T
E [gov“)(T) / a(u)dWh . — / [Du,lgo’“)(T)]a(u)dmxgow:Z]

3 (T —t)? <(z—x+§a2(T—t))3 3z—z+30*(T—1) (z—a+30*(T—1)? 1 )

- @T -0  (@T-0)2 (T -1)2  oT-1)

Equivalently, we can proceed as follows: Note first that
1p0 3 o o 0
LPr_.f(e®) = poo(T — 1) <81’3 - 8952> Pr_.f(e").

We also remark that £'P%_,f(e”) is closely related to one of the Greeks in Black-Scholes model, Vanna
which is a second order derivative of the option value, once to the underlying spot price and once to volatility.
Therefore,

T
/ P, . L'PT_,f(e")du

= / / (811800 P f(ey)) P (s — t, 2, y)dydu
3 2 0
= pog’/ / (T —u) ((&%) P?r_uf(ey)> P (2, y)dydu,
3/ —u / /pX() (u—t,z,y) <8633 (5;) pX(‘))(T—u,y,z)dyf(ez)dzdu
rRJR
T
/ (T — ) (6x3 - )// X (=t 2, (T = u,y, 2)dy f(e*)dzdu
T 93 (0
/t (T_u)d)((?x“_ax?)/Rp (T —t,z,2)f(e”)dz

B(T—t)Q 83 62 0 T
0T <81:3 ) Pr_.f(e").

Take a sequence {fn}, such that f, €S, fn — (- — K)T in &’ (n — c0) , we have

Poo

3

= pPoo
3

Poo

/ Fale (Tt )z — CV(T —t,2,K),
R
/ Falep (T —tw,2)dz — CPS(T —t,¢", K),
R

/fn(ez)w1(t,T7:U,z)pX(0)(T—t,m7z)dz — 5/<(e'—K)+7’w1(t7T,I,~)pX(O)(T—t,m7.)>S7
R

as n — oo.
Then, in sum, we obtain

V(T —t,€e", K)

_ ABSip ., o s(T—t)? (9 &\ s 2
= C7°(T—-t,e", K)+epoy 3 95 a2 C”° (T —t,z, K)+ O(e)

= CP(T—t,e" K)+e (T; H pooe”n(dyy)(—dat) + O(€%)
= CP%(T—t,e" K)+ 6/ (e — K)Twi(t, T, z, z)px(m (T —t,z,2)dz + O(€%).
R

Remark 3.1 Kato, Takahashi and Yamada (2012) has derived a new approximation formula for pricing
barrier options under stochastic volatility setting as an application of an asymptotic expansion for solutions
of Cauchy-Dirichlet problem for second order parabolic PDEs. To summarize Kato, Takahashi and Yamada
(2012), consider the above stochastic volatility model and define 7¢ := inf{t; Xt(6> = log B}, where B is a
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constant barrier, and P€f(e") := E[f(Xfe))l{Te>T}] = ¢SV-Barrier(t ¢ B). Kato, Takahashi and Yamada
(2012) has derived the following formula:

T
CSV.Barrier(t7 LK) ~ POf(eZ) + 6/ P%_Sﬁlpgf(em)dm
t
T
— CBS.BarMer(t’x) + € { (T2— t) ﬁlchS.Boxm"ie?"(t7 .Z') +/ (TQ—S) EICBSABar'rieT(S,I)h(s)ds} ,
t
where h(s) is the density of the first hitting-time of Xt(o) to log B.

4 Short-Time Heat Kernel Asymptotic Expansion

This section derives a short-time asymptotic expansion under multi-dimensional diffusion setting: in partic-
ular, the asymptotic expansion formula developed in Theorem 2.1 is effectively applied.
Consider the following SDE on R" over the d-dimensional Wiener space (W, P):

d
dX{ = ) V(X)) odW + Vi (Xy)dt, (4.1)
k=1
X, = @b eR,i=1,---,n,
or
d
dXi = > VE(X)dW] + Vi (Xo)dt, (4.2)
k=1
X = zb eR,i=1,---,n.

where Vi = (Vi, -, Vi) with V{ € Cg° and

V@) = Vi) + 5 > 3 avi@)Vi). (43)
l k

We assume that o(z) = [0 (z)] where 0% (z) = Zzzl Vii(x)V{ (z) is positive definite at = = xo. We also
define Vj as

Vk:ZV,j(x)ai_, k=01, -,d. (4.4)
i=1

and

L=

N | —

d
Z AkQ + Vo.
k=1

Let i = (41, --,im) € {0,1,---,d}™, we set a(i) = #{i : &, = 0} and ||i|| = «(i) + m. The following
stochastic Taylor expansion holds (e.g. p.4 in Baudoin (2009)):

N t ) t1 ) tm—1 )
Xy = wo+ Z Z (‘A/Z,C 0---0 ‘A/zz) (Vil)(:ro)/ odW/{! o / odW,2 - - / odW;m
0 0 0

k=11i,i|=k
+RN (¢, z),

for some remainder term Ry (¢, z) which satisfies

sup E[Rn(t,2)%)"/? < Cnt™ 072 sup (Vi o0 Vig) (Viy) o
zeR™ i,k+a(i)=N+1lorN+2

We first consider the scaling SDE in order to obtain a short-time heat kernel expansion:

d

dX; = €Y Vi(Xi)odW + EVo(X{)dt, (4.5)
=1

Xy = LEQGRH,
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where € € (0,1]. Note that X{ is equivalent in law to X,, i.e.
Xi ~F X,
and that X{ has an asymptotic expansion:
Xi~ao+ Y XM in Du(R"),
k=1

where X (k) — = (X3 (k) ,Xfﬁ)), k € N is expressed as the coefficient in the stochastic Taylor expansion at
t=1, i.e.

) 1 ) ty ) tm—1 )
XP = 3" (Voo Vi) (Vih)(o) / odW{! o / odW;2 ... / odW,m.
. 0 0 0

Next, set
1
VY= (XY = %(Xl‘ﬁ — 20). (4.6)

Then, we have
N Vvt €r — X _n
P (a,a) = (1w, 0) = (1,0, 2550 2 (1)

Note also that the (4, j)-element of the Malliavin covariance matrix of Y = 22:1 fo Vi (o) 0 dW is given
as:

d 1
oyl > / Dy kY Dy Yyt (4.8)
k=1"0

d
= ZV,f(xo)V,g(l’o) " (o).

Since Yl‘/E is uniformly non-degenerate by the assumption that o(zo) is positive definite, the smooth density,
Vit
pY ! (1,yo0,y) for the law of Yl\/z exists.
Vvt
Thus, p¥ ! (1,90,y) has an asymptotic expansion by setting ¢ = /¢ for Y, where

¢ (X5 —20) N i1 o) n
Yy = — ~ X Do (R"). 4.9
i - Z 1 in Doc(R") (4.9)
In particular,
d 1
vP=x" = / Vie(zo) 0 dWE. (4.10)
k=10

Let Y;7 denotes the i-th element of Y7, that is Y* = (Y15, Y51, -+, Y1), and define Yﬁ‘k, keN,i=1,---,n
as

0.k 1 d* (k+1)
Yoo = g Yileo =Xy (4.11)

Then, applying Theorem 2.1 especially, (2.24), we obtain an asymptotic expansion of p¥" (1,0,):

N
Y0 = 0 (z ZEHle,HYSfZ Yf—y]> 412

+0(eN ),

where

(49) J

Y oY

k=1 B1+-+B=4,8;>1

18



Here, it is easily seen that the density of Y7 is given by

yTo(g)~ty

P (1,0,y) = (2m) V2 det(o(wo)) e T E (4.13)

where o(z0) Zk L Vi (@o) Vi (%0) (1<i,j<n) -

Consequently, by (4.7), we obtain the following theorem that presents a short-time off-diagonal heat kernel
expansion.

Theorem 4.1 Ast | 0, we have a short-time asymptotic expansion of the density pX(t,xo,x):

X 1 _1yg oz Toe) " @=sg)) a /2 —1/2
D (t,xo,x)NWdeta(aﬂo) e 2t Zt ¢ (t (x—xo)) ,

Jj=0

(4.14)

where o(z0) = (-1 _, Vil (z0)V{ (%0)) (11 j<m)
and (; (t 1/2(x - a:o)) s the j-th push-down of the Malliavin weights defined by

[4]
ZE[ xW ngjg) XM = UQ(x:m)] (4.15)
(4)

ZE [Hk (Y, ,HY“ POV =712 (2 wo)] .

Here, Y and Yﬁk are given by (4.10) and (4.11), respectively, and Xl(l) and Xff) are given by

d 1
x® = Z/ Vie(xo) 0 AW,
k=070
~ ~ . 1 . t1 . tm—1
xP = Z (Vi 0+ 0 Viy) (Vi2)(20) / odW;! o / odW;2 - - / odW,™.
i|li 0 0 0

G (P (@ — o))

Also,

_ 1
> = > oW
k k=1 pB1+-+Br=7,8:;>2
and
. 1
> = > oW
k k=1 1+ +Br=3,8;>1

Remark 4.1 In the diagonal case, the diagonal heat kernel p~ (t, o, o) is approzimated by

— det o(zo) 1/2< tJC ),
(2m t) (2nt)n/2 ]z; i

where

[4] [
S B | m(x® HX(m) XM = o
k

()

ZE[ vy Hyo?lfl YL =0
k

¢ (0)
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Next, we provide alternative methods to obtain the coefficients of the expansion.
Let A be the perturbed generator associated with (4.5):

d
1 SN2 27
A=3 > (R)? + €V,
k=1
Then, the generator L€ associated with the process after the transformation, Y;* = @ is given by
1
L= §Z(LE)Q+EL8. (4.16)
k=1
where
L;:ivg(wr(—:y) 9 k=0,1,---,d. (4.17)
— yi’
Hence, by applying (2.20) in Theorem 2.1, we have for f € C,(R"),
N
0)=PY(0)+ > €&5(y) + VT Ra(y), (4.18)
j=1

where

fw - Y Y /// (4.19)

k=1 B1+--+Br=35,8:>1
P(()lftl)[’ﬁl P(()t1*7f2)[’52 . 'P?tk*tkfﬂ[’ﬂk P(t)k f(yo)dty - - - dtadty|yo=0,

k
with L:k = %iﬁﬁﬂe:O, k GN,Z: 1,"'77’L.

5 Applications of Short-Time Asymptotic Expansion

This section shows three examples of Theorem 4.1 in the previous section. In particular, we explicitly derive
short-time asymptotic expansions under stochastic volatility model with log-normal local volatility and
general local-stochastic volatility models. Moreover, we applies (4.15) and (4.19) in Section 4 to computing
the coefficients in the expansions. In addition, for local volatility model in Section 5.1 and Appendix, we
compute the expansion coefficients &;(y) (j € N), j = 1,2 in (4.19) by using Lie brackets.(Lie bracket [A, Z]
stands for [A, Z] = AZ — ZA where A and Z are vector fields.)

5.1 Short-Time Asymptotic Expansion for Local Volatility Model

Consider the following time-homogenous local volatility model.

dXt = /J,(Xz)dt + G'(Xt)th, (51)
Xo = Xo.
Proposition 5.1 Wet | 0, we have
p(t, xo, x) ~ ;exp {W} (1 + V01 (t, zo, x) 4 t92(t, xo x))
’ ) 271’0’(1‘0)2t J($0)2t ’ ) ; )
where
91(t, o, x) (5.2)

ha((z — m0)/Vt, 0° (w0)

a*(o)

hs((z — m0) /vt 0% (w0))

(02(0))? ’

1 3
= p(xo) + 50(960) 9o (xo)
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and

’192(75, xo,m)
_ 1 o (20)2 08 (= he((z — x0)/Vt, 0% (x0))
A P
+% (8% (20) 0 (w0)° + 490 (w0) 0 (w0) + 3u(w0)or(20)) ha((z = Z‘;g{ﬁ)ﬁ” (20)))
+i (820(:50)0(1'0)3 + 24/ (o) o (20)* + 2u(w0)do (z0) o (0) + Do (x0)’ o (20)* + 2u(x0)2)
ha((x — o) /V/t, 0% (20))

(0%(20))?

Here, hyn(x,X) stands for the Hermite polynomial of degree n with X, that is
2 d" 2
hn ) = (=% n_xz/(2%) —x /(22)'
(55%) = (-3)"e”/ ) e

(Proof)
We apply (4.15) and (4.19) in computation of the coefficients of the expansion.
First, we have the following stochastic Taylor expansion

X = w0+ X1t + Xot + X3t + Rs(2),
where
X1 = / o (z0)dWs,
t s
X0y = / w(zo ds+/ 80(370)/ o(xo)dW,dWs.
0
Xar = / Ou(x / o(zo)dW,ds

%/ P a(xo)(/s o (0)dW,,)2dW,

/ / (o) dudW, + /0 t@a(aco) /0 o (z0) /Oua(a:o)dWUqudWS,

and R3(t) is a remainder term.
Let X¢ be the solution of the following scaling SDE.
dXi = Ep(X5)dt + eo(X5)dWs,
XS = Xo.

Let A be the generator of X{ defined by

2
A :62102(@882 +Eu(a) 2

Consider a transform
€ € 1 €
Yi=f(XP) = ;(Xt — o),

then the generator £¢ of Y;® has the following form

2

5_12 a
L= 57 (xo—|—ey)8 5 +e,u(a:o+ey)8y.

(5.3)

(5.4)

(5.5)

First, we apply the push-down of the Malliavin weights to computing the coefficients of the expansion.

Note that X; and Yy are expanded in D, as follows.

X; = wmo+eXu+ €2X2t + €3X3t + 0(64)7
Yy Yor + €Y1t + €Yoy + O(€%),
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where

d . i

Yoo = Xue= 67Xt|€:0 = / o (wo)dWs,
€ 0

1 82 t t s

Yi: = Xo= ——2Xf|6:0 = w(zo)ds + o (xo) o(x0)dW,dWs.
2! De o o o
19
Yo = Xat= 31 5 73 Xt |e=0

_ /Otau(mo)/osa(:co)quds—i—;/Ot82a(xo)(/osU(mo)qu)ZdWS

t s t s u
+/ aa(xo)/ u(mo)dudWS+/ 8a(mo)/ 80(:50)/ o (x0)dWyodW, dWs.
0 0 0 0 0

Note that Y;® is uniformly non-degenrate.
The following relation holds,

1
P (to,2) = (L fyi(@o). (@) (5-6)
1. Using Bismut identity,
ye
Ekp (17 Yo, y)
= %E [5y (Y(E))} le=o (64 (+) is a delta function at y.)

= E [ay (Y1(0)> . (Yf‘” Y(€)| _0)}
1 ) ! ! B
0 €
= E |:5y (Yl( )> 0_2(1:0) { Y( )|E 0/0 U(l‘o)qu —/ Du,1f1/1( )|€_00'(Q;‘0)du}:|

_ ) _1
= E [6y (Y1 ) (w0 {( (z0) 4+ o(x0)00(x0) / W dW) o(xo)W1 —o (:Eo)aa(xo)W1}]

- /R 5,(0)

xE { - {(“(mo) + a(wo)0o (zo / W, dW> o (20) W1 — 0 (20) 9o (20) W } |o(z0)W1 = v}

o2(wo)

1 1,2
e 2Y dv

X

= E [ 1 {(M(xo) + a(mo)@a(:vo)/ WdeS) o (z0) Wi — 02($o)80(x0)W1} (o (o)W = y]

o (z0)
L -4(st)

2mo(z0)?

=

Note that
1 1
Duyl/ 0(20) 020 (20)WsdWs = 0(20)0zy0(2){ Wa +/ dWs} = o(20)do(z0)Wh
0 u

Note that

Il
7 N
o\

2

V)

QL

)
~_
7N
S
B
=

|
2
gi —_
e
N~~~

I

N —

FE [/1 WsdWs|o(z)W1 = y]
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Then, we obtain

2mo(x0)?

. Alternatively, we can evaluate the coefficients of the expansion in the following way.
Let

o _ 1 o 0?

L = 50’ ($0)87y27
o 9

1
L = a(mo)f)a(azo)yany + M(mo)@,

2 1 2 2 2 62 9]
L5 = 5((00(20))” + o(20)070(w0))y 92 +8“(m0)y87y’

then
8 1
oo = [ Pl LR )dsho.
0

Let h be a map y — h(y) such that
hy) = L'PUf(y)=L'P]__of(y)

LBV, =y = £ / P (5,9, 2)f(2)d=
R

= (a(:ro)aa(xo)yaa; +u(zo)§;> /pro (s,y,2)f(2)dz.
Then, we explicitly evaluate (4.19) for j = 1.
Pli_ o) L'PY f(y0)lyo=o0
= /pro(l = 5,90, Y)h(y)dylyo=o

/ P (1= 5,0,) (zl / pyo(&yw)f(Z)dZ) dylyo—o
R R

vO 02 0 Yo
/Rp (1—s,y0,v) <<0(wo)50(ﬂco)(y—yo)ay2 +u(wo)8y> /Rp (s,y,Z)f(2)d2> dylyo=o-

Note that

2 yo

P (1= 5,90,9)(y — yo) = (1 — s)o(z0)*p"" (1 — s, yo»y)aiyo- (5.8)

Therefore, we have

Pl L P f(y0)]yo=0
8 yO 2

D 71 s0,9) (((1s)a(mofaa(mo);ww(wo)g) / py°<s,y,z>f<z>dz> dylygmo

r 9o

3 0 0
- / %py (1—5,30,9) (((1—s>c<xo>3aa<xo>) / p” (s,y,z>f<z>dz) dylyo—o

0 yo vo
—/R@fyp (1—s,90,9) (u(l’o)/Rp (S»y,Z)f(Z)dZ> dylyo=o

(1- S)U(wo)saa(wo)/ %pyo(l —5,70,Y) (/ p" (s, Z)f(Z)dZ> dylyo=0
R

RyO
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0
+u(:vo)/ 8—19 1*8 Y0, Y (/ (5,9, 2 )dZ) dylyo=0
r 90

— (1 s)o(a0)*do(z0) / (% ( / P (1= 550, )p"" (s,y,zmy) F(2)dz] 00

/ ai (/ P (- s,ymy)pyo(s’y’z)dy) FE o=
R

3 0 0
- (1—s>a<xo>saa<xo>a—3 / " (1, 90, ) (2)dzlyom0 + (o) - / " (1,50, 2) f(2)dzyomo
Yo R 3yo

R

o}
Ptl)f(yo)|yo=0~

= (1-s)o(x0)’d0(w0) o= i 0yo

a3 P f(y0)lyo=0 + pi(z0) 5 —

Then, the first order approximation term is given by
1
R ST
0
' 5 o o 9 po
= (1 —s)ds ) o(zo) 80($0)8711;>,P1f(y0)\yo=0 + M(ﬂfO)afyoplf(yO)\yo:O
0 0

= 1Uccosacco 723 _ o) ——— v z)J\z)az
= /R{2 (x0)" 00 ( )<U(x0)6 a(x0)4>+u( )a(mo)2}p (1,0,2)f(2)dz.

3. Moreover, the coefficient is computed by using the Lie bracket.
1
/ Pli_1) L P f (yo)dti|yo—o
0
(-t
= [ e e e P (it o
o =

= (,Cl + %[ﬁo, ﬁl]) P(l)f(yo)h;o:ov

because [£°, [£°, £']] = 0 and hence all the terms in (5.9) for i > 2 are equal to 0.
The Lie bracket [£°, £'] is explicitly computed as follows.

o0 — %a(x0)282(U(xo)aa(xo)y02)
1
= 503(330)80(950) (8(52 + yag))
1
- 503(930)30(%) (20° + ;) -
LL° = o(w0)do(wo)yd? (2 (0) 32)
_ %ai”(xo)aa(xo)ya‘*.
Then
[50751} — Opl_ plpo
= o(x0)’d0(20)d°,
Then we have
1 1 1 (y-wo\?
ol o) L), 59
(284 512°.1) ——— Jvo—0 (59)
B y 1 3 v 3y
- {M(IO)U(J]O)Z + 20’(1’0) 8100'(.’30) (O'(.’L'())G U(l’o)4)}
2
X;eié U(zo)) .
2mo(20)?

The calculation of the second term approximation is given in Appendix.
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5.2 Short Time Asymptotics for Stochastic Volatility Model with Log-
normal Local Volatility

Consider the following stochastic volatility model with log-normal local volatility which includes the Heston
type model:

dS; = rSidt+ /vSedWe,
So = s0>0,

dvy = a(ve)dt + b(ve)dZs,
vo = v>0,

where W, and Z; are two standard Brownian motions with correlation p.
We have a short-time expansion of density for the logarithmic process.

Proposition 5.2 Whent | 0, we have

X(ta o, CC) ~

» CUO)2> {1+\/£w1(t,:r07x)}, (5.10)

1 (z
- exp | =0
vV 2mvot P 2vot

where r =log s , xo = log so,

hs((z — x0) /v, vo) n (7, B lvo) hi((z — m0) /v, vo)
3 2 °

1
wi(t, o, ) = ipvvob(vo) - %
0

Also, the following approzimation formula of the option price holds:

- x 1 (ZE*Z’())2
Clt,K) ~ e’ — K exp | ———— | dx
R e o)

+Vt h (e — K)w1(t, o, ) ! exp —M dz
log(K) U 2ot 200t
(Proof)
We will apply (4.15) and (4.19) in computation. First, we have the following stochastic Taylor expansion
X: = wo+ X+ Xoe +Ra(t), (5.11)
where
t
X1 = / VoodWs, (5.12)
0
t 1 1 t 1 s
Xor = / (r—=wvo)ds + 7/ —/ b(vo)dZydWs.
0 2 2 Jo Vo Jg

Next, we introduce a time scaling parameter € = v/%,

1
dX; e (r — Evf)dt—i—e\/vdet,

dvi = €ea(vi)dt + eb(vf)dZ:.

The generator of the above diffusion is

21 9* s 9
+e 51)(7})%—&—6 a(v)%.

82
PVUb(v) 5o

Consider a transform ¥ = f¢(X) = %(X — o), then the generator of (Y, v) is given by,

1 02 1.0 o? 0? 0

e __ ~ ., Y _ = - 21 v 2 v
L= 2U8y2 + ¢e(r 211) oy + epv/vb(v) 3y +e 2b(v) 502 + e“a(v) E

X and Y are expanded in Do,

X = w0+ eXu+€ X+ O(),
YY = Yo+ €Yy +0(),
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where

t
Yor = Xlt:/ VUuodWs,
0

t
1
Yi: = X2t:/(r vo)ds + = / / (v0)dZydWs.
' 0 2 \/7

Note that
Vi 1
P (tao,@) =" (1, £ (o), 1Y (@) . (5.13)
Vi
1. Using the Bismut identity, the first order approximation term is given as
0
o (1L0.y)lo
0
= E[Hl(YOLYn)\Ym =ylp" (1,0,9)
= [Yn/ VvodW1 —/ Dy,1Y11v/vodt| Yo fy] (1 0,%)
_ )1 v _3(y _1 ) (ﬁ) O
B {4pmb(vo) <v8 5 (vo)) * (T 2%) o ) g7 (100
Then we have a approximation formula of the density
vi 2
P (1,0,9) ~ exp{—y} (1+ vt (1,0,y)), (5.14)
TV 2UO
where
_ (y7 UO) ( 1 ) hl(y7 UO)
Gi(1,0,y) = 4p\/>b(vo) w3 +{r—3w w
By (5.13) and (5.14), we have the formula (5.10).
2. Alternatively, we have
P 1
E|€:0P(1)f(yo)‘yo:0 = / P?1—s)£1pgf(y(1)d3|yo:0
0
with
1 0 . 1.0 ?
= —LYe=0o=(r—=v)=— b . 1
Note that
9 Yo(s z) = 158—2 Yo(s z)
va >y7 - 2 ayzp 7ya M
Let g be a map y — g(y) such that
gly) = glp(s’f(y) = —(1— q)f(y)
= ﬁlE[f(YP)\YP_S =yl =L / " (5,9, 2)F()dz,
R

Then, we explicitly evaluate (4.19) for j = 1.
Pl L'PLF (Y0)lyo=0

0
/ P (1= 5,90, 9)9(5)dylyoo
R

/pyo(l — 5,90,Y) (ﬁl/ " (5., Z)f(Z)dZ> dylyo=o
R R
yo 1 83 1 0 yo
/l;p (1 - Sayoay) ((Sp\/{)b(v)g + (T - 2”)%) -/l:{p (S7yaz)f(z)dz) dy|y[):0

SOV P00+ (= 50) 22 P70
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Therefore, we have

1
/ (1 s)‘c Psf(yo)d5|y0 =0
0

= /{ ~pv/Uab(vo) (;—3(U0)>+(r—;v0) (jo)}py‘)(l,o,y)dy.

5.3 Short Time Asymptotics for Local-Stochastic Volatility Model

Consider the following diffusion:

dXy = oe(Xe)dWe,

Xo = x>0,

doy = a(ov)dt+ b(or)dZy,
oo = o>0,

where W; and Z; are two standard Brownian motions with correlation p.

Proposition 5.3 When t | 0, we have

1 (o — z)?
p(t, w0, ) ~ ———=——=1exp (- 1+ Vin(t, zo, 2)) ,
2rodc(xo)?t 20c(z0)?t ( )

where

l\JM—l

n(t, zo, ) = (02¢(x0)2)?

(Pb( )+ 0280(350)) o?c(zo)? {h?)((gv —x0)/V/t, 0%c(x0)?) } ‘

g&fi%?ﬂpute the coefficient of the first order in the expansion by applying (4.15) and (4.19).
First, we introduce the time scaling parameter € = /%,
dXt = GO'tC(Xt)th,
doy = e2a(az)dt + eb(ot)dZ;s.
The generator A associated with X is given by

2

e_ 21 2 2 07 2 0 2 0 2l 2 0
A" =e€ i c(x) Ere + ¢ pob(o)c(x) 9200 + € a(o) % +e 3 (o) Erh
When € | 0, A€ is degenerate. We consider the following transform,

X*iljo
. .

Yy =

Then the generator £ associated with Y is elliptic under € | 0 and is given by

2 2 2

L= %a%(wo +ey)? 882 + epob(o)c(zo + €y) 888 + EQCL(U)% + 62%b(0)2%,
and

u(t,90) = Pif(yo) / fwp™ (t,y0,dy),
is the fundamental solution to the following equation,
9 e
(a—ﬁ)u (t7y0) = 07
u(to,y0) = f(vo)

By differentiating (5.21) at ¢ = 1, we have

0
P le=oP1 f(w0) /f ywi(y)p” " (1,90, y)dy,

where the map y — wi(y) is the first order PDE weight.

27

(5.16)

(5.17)

(5.20)

(5.21)

(5.22)

(5.23)



1. Using the integration by pats formula, we derive the first order PDE weight w1 (y),
a 1
S0P ) = [ Pl L ()
0

1 1
/ fly |:Y11/ oc(xo)dWh e — Dy Yiioce(xo)dt|Yor = y| p(1,y0, y)dy.
c(a:o o o

£° and L' are given as follows;

o _ 1o 2 O
£’ = 57 c(zo) a2
1 9 62 62
L' = o c(yco)(’?c(yco)ya—y2 + pab(a)c(:co)m.
Note that
9 yo _ 2 o* Y0
80’p (S’yvz) - O—SC(:EO) 8y2p (Say7z)7
Yo _ 2 2 0 yo
P (I=syo,y)y = (1—s)oc(xo) 0P (1= 5,90,9)lyo=0-

Let g be a map y — g(y) such that

0
o) = P ) = P f0) = CEUODIV, =al = 2 [ 3" (s )
R
Then, we explicitly evaluate (4.19) for j = 1.
P(()1—s)clpgf(y0)‘yo:0

0
_ / P (1= 5,90, 9)9(¥) Yoo

= /p (1—s,90,9) <£1/ pyo(s7y72)f(2)d2> dylyo=o
= / (/ (1 — s)oe(x0)?0c(xo) ((f??/p O(1 - s,yo,y)) ;yZpYO(s,y,z)dy> f(2)dz]yo=0

3 0

+/ ( pYO(l —S,y07y)8P02b(U)c(m0)3%pY (S7y,z)dy> f(2)dz|yo=0
R R Y
3 . .
=/ </R(1 — 8)o e(x0) dc(xo) (8y§8y()py (1- s7y0,y)) ¥ (s,y,z)dy) £(2)dz|yo—o

+/R </R( 683310 0(1s,yo,y)) Spa2b(a)c(x0)3pY0(s,y,z)dy> F(2)dz]yg—o

= (- otela) ac(xo>§ (s o ) ey

+spo b / </ (1 -, yo,y)pyo(&yvz)dy) f(2)dz]yo=0

= (1 s)ote(ao)? ac(xo>a / " (Lo, 2) 1 (2)d
Tspo*b(o / (1,50, 2) f(2)d2y—o

83
5P 1f(Y0)]yo=0-

= (1-s)o'c(xo)® 30(990) o)" s

o Plf(yo)no o + spo’b(o)e(x
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Therefore, we have

1
P?lfs)ﬁngf(yo)dsbo:o

M= S—

<U4C(5E0)330(170)683 + po’b(o)c (960)366218) P (0)lyo=o-

and

1o} ye
a _ le= 17 9’
Bele=op" (1,50,y)

4 3 0° 2 3 0° Yo
o"c(zo) 80(330)87%34'00 b(o)c(zo) Py P (1,%0,9)
%)

(pb(0) + o dc(w0)) G%(%)BMPYO(L Yo, y)-

(02¢(x0)?)?
Setting yo = 0, we obtain the result.

. Next, we compute the first order PDE weight by applying (4.15) for j = 1 in the following way. First,
X is approximated by stochastic Taylor expansion,

X: = w0+ Xit + Xot + Rs(t),
where

t

X1 = / oc(xo)dWs,
0
t s t s

Xor = /c(xo)/ b(a)dZudWS+/ a@c(zo)/ oc(xo)dW,dWs.
0 0 0 0

X and Y9 are expanded in Do,

Xt(e) = zo+eXu+ X +O(63)7
Yt(e) = Yor+eYi + 0(62),
where
P t
Yor = Xue= *Xﬂe:o :/ UC(xo)dVVs,
Oe o
1 82 t s t s
Yie = Xot=--5X{|e=0= c(zo) b(o)dZudWs + | ocdc(xo) oc(xo)dW,dWs.
2 0e? 0 0 0 0

Then, the PDE weight is caluculated as follows,

1

1 1
wl(y) = WE |:Y'11/0 O'C(Io)dwl t —/ Dt 1Y110'C(1'0)dt|Y01 = y:|

- (O'ZCE/ ) §>(pa b xo / / duds h2 y’U C() )) )

+ac:co 5‘cmo//ddh2y’gc(x0)))

(02¢(0)?)?

et BT | by o))
= 7 N Gy T2 ) A T
sha(y, o elzn)?)

1 2 2
= 5 (pb(0) + 0*Dc(0)) (o) (02¢(x0)?)?

The following formula holds,

p€(17x07x) = p(l,o, f(x))l7

€
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and we have
p(t,ito,l’) :p\/{(17$07x)'

Then, we obtain a short time off-diagonal asymptotic expansion of heat kernel,

(w0 — x)?
p(t, o, x) ~ W exp <_2‘73C(950)2t> (1 + \/Zn(t,xo,x)) ,
where
n(t, z0, ) = % (pb(a) i 028c(x0)) o2e(x0)? hs((z —(:giégzﬁ?;;sc(wo) )

5.4 Numerical Example

This subsection provides an numerical example for option pricing under the short-time asymptotic expansion.
In particular, we use the following Heston model:

dS: = \/veSedWi,, (5.24)
dve = k(0 —v)dt + v/ vi(pdWi + /1 — p2dWay),
with parameters So = 100, vo = 0.16, k = 1.0, § = 0.16, v = 0.1, p = —0.5.

A call option price with strike K and maturity ¢ is approximated as follows;

Ct,K) = E[(S: — K)T] ~ Co(t, K) + VICi(t, K) + tCs(t, K), (5.25)
5.26)
where
C()(t7 K) = / (ex - K)+p(t,mo,m)dw,
R
Ci(t,K) = /(em — K) T wi(t, zo, 2)p(t, zo, x)dx,
R
Ca(t,K) = /(em —K)+w2(t,wo,m)p(t,wo,x)daz,
R
(5.27)

and p(t, o, x), wi(t, zo, ), w2(t,x0,x) are obtained in the similar manner as in Subsection 5.2. Also, put
option prices are computed by the Put-Call parity.

Table 1: Short time asymptotics 7' = 0.1
’ Strike | Benchmark \ HKE order 2 \ HKE order 1 \ HKE order 0 ‘

70 Put 0.01 0.01(-17.17%) | 0.00 (-55.56%) | 0.81 (8079.80%)
80 Put 0.19 0.19 (-1.35%) | 0.18 (-4.47%) | 0.95 (396.41%)
90 Put 1.38 1.38 (-0.35%) | 1.37 (-0.91%) | 2.02 (46.06%)
100 Call 5.04 5.03 (-0.14%) | 5.02 (-0.30%) | 5.47 (8.66%)
110 Call 1.70 1.69 (-0.38%) | 1.68 (-0.84%) | 1.93 (13.95%)
120 Call 0.44 0.43 (-0.83%) | 0.43 (-2.33%) | 0.53 (22.82%)
130 Call 0.09 0.09 (-1.48%) | 0.08 (-6.04%) | 0.12 (36.91%)

A Second Order Approximation in Section 5.1

1. Applying Bismut identity, the weights of second order approximations are calculated as follows.

19 ye 1 0
iﬁpy (1707 y)|€=0 = {EE[HQ(}/OL)/IQI)] + E[HI(Y017Y21)]}pY (1707y)
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Table 2: Short time asymptotics 7' = 0.2
’ Strike | Benchmark \ HKE order 2 \ HKE order 1 \ HKE order 0 ‘

70 Put 0.15 0.14 (-5.86%) | 0.12 (-18.18%) | 1.72 (1041.94%)
80 Put 0.86 0.84 (-1.39%) | 0.82 (-4.09%) | 2.29 (167.57%)
90 Put 2.94 2.93 (-0.59%) | 2.90 (-1.43%) | 4.14 (40.75%)
100 Call 7.12 7.09 (-0.31%) | 7.07 (-0.66%) | 8.02 (12.71%)
110 Call 3.46 3.44 (-0.64%) | 3.42 (-1.35%) | 4.07 (17.67%)
120 Call 1.50 1.48 (-1.17%) | 1.46 (-2.75%) | 1.87 (24.73%)
130 Call 0.59 0.58 (-1.91%) | 0.56 (-5.41%) | 0.79 (34.48%)

Table 3: Short time asymptotics 7' = 0.3
’ Strike | Benchmark \ HKE order 2 \ HKE order 1 \ HKE order 0 ‘

70 Put 0.44 0.42 (-4.64%) | 0.38 (-14.33%) | 2.74 (516.85%)
80 Put 1.63 1.61 (-1.63%) | 1.56 (-4.60%) | 3.71 (127.14%)
90 Put 4.26 4.22 (-0.84%) | 4.18 (-2.00%) | 6.02 (41.33%)
100 Call 8.70 8.66 (-0.49%) | 8.61 (-1.06%) | 10.10 (16.01%)
110 Call 4.93 4.89 (-0.90%) | 4.84 (-1.91%) | 5.96 (20.89%)
120 Call 2.61 2.58 (-1.50%) | 2.53 (-3.38%) | 3.33 (27.30%)
130 Call 1.31 1.27 (-2.31%) | 1.23 (-5.83%) | 1.77 (35.59%)

Iterating the Bismut identity, the terms of %HQ(%l, Y121) are calculated as follows:

B[ (Y., 5 (u(0)t)) o )Wi = o]

2 ha(y,0* (20))

1
5(#(960)15) (02(@0)2

E {Hz (n‘@,u(xo)to(mo)&a(wo) / Wsdws) |o(z0)We = y]

_ Ly se oo haly, 0% (20)
= 275 w(xo)ta” (wo)0a (o) (02(z0))*

H, (th), %(g(zo)aa(%)y (/ WSdWS> ) lo(zo)We = y‘|

R (o2 0 (2 he(y, 0* (o))
= 0@ (@) TS

1,3 o(zo)) 2ot (2 ha(y, 0*(z0))
+2 {t (8 ( O)) ( 0)} (02($0))4
2 ha(y, o* (o))

(0%(20))*

The terms of Hi(Yp1,Y21) are calculated as follows,

E

+it2(0(x0)60(m0))

E l:Hl (Y’t(o)ya‘u(mo)a(mo) /t ng5> |0’($0)Wt = y:|

1 2
= 50u(x0)o” (zo)t (02(0))?

t
E [Hl (Y;m), 502(230)820(200)/ Wdes) |o(xo)Wr = y]
0
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Table 4: Short time asymptotics T'= 0.4

’ Strike | Benchmark \ HKE order 2 \ HKE order 1 \ HKE order 0 ‘

+i02($0)820(1’0)0(x0)t

(0%(20))*

70 Put 0.82 0.79 (-4.46%) | 0.71 (-13.68%) | 3.83 (364.08%)
80 Put 2.41 2.37 (-1.92%) | 2.29 (-5.29%) | 5.13 (112.42%)
90 Put 5.41 5.35 (-1.09%) | 5.27 (-2.61%) | 7.74 (43.03%)
100 Call 10.04 9.97 (-0.69%) | 9.88 (-1.51%) | 11.94 (18.94%)
110 Call 6.21 6.14 (-1.17%) | 6.06 (-2.49%) | 7.69 (23.79%)
120 Call 3.68 3.61 (-1.84%) | 3.53 (-4.07%) | 4.77 (29.87%)
130 Call 2.09 2.03 (-2.71%) | 1.95 (-6.49%) | 2.87 (37.41%)
2
= éaz(mo)((ﬁa(azo)o’g(wo)ts4h4((;/£é30()§2))

E {Hl (Yt(0)7ﬂ(x0)80'(1'0) /t stVS> lo(z0)Wy = y}

= %,u(xo)ao(xo)d(xo)t

(0% (20))?

FE |:H1 (yt(o)7 (80(:50))20-(x0) /t /S WuqudWS) |o(zo)W: = y]

(0% (w0))*

_ %30(%)20(%)4#%2@@)

Therefore, we obtain the second approximation term

82

Oe?

B8, (Y{)]|e=o

= {éaa(xo)%ﬁ(xo)w

1
+

+

=] = O

24/ (x0) o (0)? + 2u(20)do (20) o (20) 4 Do (x0) 0

xp(

(820(960)0(170)5 + 490 (z0)*0 (o) + 3,u(xo)8c7(xo))

(8% (z0)o(x0)?

1,x0,y).

2. Using the Lie bracket, the second order term is calculated as follows.

192

L

t t1
e=0Pif(yo)lyo=0 = / / P(()tftl)ﬁlp?tlftz)ﬁlpgz f(yo)dtadti]yy=o0
o Jo

(w0)” + 2u(x0)?)

ha (y7 02($0))
(0(x0)))*

t
+/ P?tftl)ﬁnglf(yo)dtl‘yo:()'
0

The first term is given by

/ / L (= 0L L)L + (¢ — £2)[L%, £ )P F(yo)dbadt [y o,

since [£°,[£°, £1])

=0.
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ha(z, 02 (x0))
(02(20))?
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The second term is given by

[ @ 4 = e 4 e 0 P o)t o

because [£°, [£°, (L%, £]]] = 0.
Then we have

182 .
gﬁkzopy (1,0,y) = (A1)

= (€ 1% L3 [0 2, 2] 4 (£1)?
1 1 1
+5 LM% L1+ 2L LTt + g[ﬁo,61]2)pyo(1,yo7y)|yo=07
where )
y—y
P (Lo, ) = )
270 (x0)?

Each terms are calculated as follows.
0
‘CQPY (lvyoa y)|yO:0 = 03

1 0 1 1 1 0
g[ﬁo’EQ]PY (1,90, 9)|yo=0 = 50(%)2 (aﬂ(%) + 530(930)2 + 5320(%)0(%0)) °p" (1,90, ¥)|yo=o0,

1 0 1 0
6[[’07 [‘607 £2]]py (17y05y)|yO:0 = 60(x0)4 (80’(%0)2 + 820'(1'0)0'(58())) a4pY (17 Yo, y)|y0:05

(£Y2p(1, 90, 9)lyo—o = = (9o (z0)o (w0)u(x0) + 1(x0)2)*P"" (1, Yo, ¥)lyo—o

N | =

1 0 1 0
icl[ﬁo’ﬁl]py (l,yo,y)|yo:0 = gﬂ(x0)0($0)380($0)84py (1ay07y)‘y0103

1 0 0
g[ﬁo,ﬁl}ﬁlpy (1,50, 9)lyo=0 = = (11(w0) + 30 (w0) 0o (0))o(0)* Do (20)0*p" (1, Y0, y)|yo=0,

[ =

1 0 1 0
g[‘C’O?‘Cl}QpY (17y07y)|y0:O = gg(mo)eag(‘ro)Za‘spY (17y07y)|y0:0'

Hence, we have

%%'6201))/5(17079)
- {éaa(:co)%ﬁ(xo)%m
2 (0P (o) (20)° + 400 (20)0 (w0) + Byu(z0) o (x0)) %;()x)zn
1 (@ al0)o@o)’ + 21 (20)o(w0)? + 20(a0)0(z0) (wo) + Do (o) o w0)? +20(a0)?) W }
xp”" (1,0,). (A.2)

Therefore, we obtain the result.

33



References

(1]
2l

B3l
(4]
(5]
(6]
(7]
(8]

(9]

(10]
(11]
(12]

(13]

20]

21]
(22]

23]

Baudoin, F.: Stochastic Taylor Expansions and Heat Kernel Asymptotics. (2009)

Ben Arous, G. and Laurence, P.: Second order expansion for implied volatility in two factor local
stochastic volatility models and applications to the dynamic A-SABR model.(2009)

Black, F. and Scholes, M. (1973). : The Pricing of Options and Corporate Liabilities, Journal of Political
Economy 81 (3): 637-654. (1973)

Cheng, W., Costanzino,N., Liechty,J., Mazzucato,A. and Nistor,V.: Closed-form Asymptotics and Nu-
merical Approzimations of 1D Paraolic Equations with Applications to Option Pricing, Preprint, (2010).

Cheng, W., Mazzucato,A. and Nistor,V.: Approzimate Solutions to Second Order Parabolic Equations
II: Time-dependent Coefficients, Preprint, (2011).

Ilhan A., Jonsson, M. and Sircar, K.R.: Singular Perturbations for Boundary Value Problems arising
from Exotic Options, STAM Journal on Applied Mathematics, 64 (2004) 1268-1293.

Fournié, E., Lasry, J.-M., Lebuchoux, J., Lions, P.-L. and Touzi, N. : Applications of Malliavin calculus
to Monte-Carlo methods in Finance, Finance Stoch. 3 (1999), no. 4, 391-412.

Fournié, E., Lasry, J.-M., Lebuchoux, J. and Lions, P.-L. : Applications of Malliavin calculus to Monte-
Carlo methods in Finance II, Finance Stoch. 5 (2001), no. 2, 201-236.

Fujii,M. and Takahashi,A.: Analytical Approzimation for Non-linear FBSDEs with Perturbation
Scheme, Working paper, CARF-F-248, University of Tokyo (2011), forthcoming in International Jour-
nal of Theoretical and Applied Finance.

Gatheral, J., Hsu, E.P. and Laurence, P., Ouyang, C. and Wang, T-H.: Asymptotics of implied volatility
in local volatility models, forthcoming in Mathematical Finance (2009)

Hagan, P.S., Kumar, D., Lesniewskie, A.S., and Woodward, D.E.: Managing Smile Risk, Wilmott
magazine, (2002).

Tkeda, N., and Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, Second Edition,
North-Holland /Kodansha. (1989)

Kato, T., Takahashi, A., and Yamada, T.: An Asymptotic Expansion for Solutions of Cauchy-Dirichlet
Problem for Second Order Parabolic PDEs and Its Applications to Pricing Barrier Options, Working
paper, CARF-F-272, University of Tokyo. (2012)

Labordere, P.H.: Analysis, Geometry and Modeling in Finance : Advanced Methods in Options Pricing,
Chapman and Hall, (2008).

Léandre, R.: Malliavin Calculus of Bismut type without probability (2006)
Léandre, R.: Malliavin Calculus of Bismut type in semi-group theory (2008)
Malliavin, P. : Stochastic Analysis, Springer. (1997)

Malliavin, P. and Thalmaier, A.: Stochastic Calculus of Variations in Mathematical Finance, Springer.
(2006)

Merton, R. C. : Theory of Rational Option Pricing, Bell Journal of Economics and Management Science
(The RAND Corporation) 4 (1): 141-183. (1973)

Takahashi, A., Takehara, K. and Toda, M.: A General Computation Scheme for a High-Order Asymp-
totic Expansion Method, Working paper, CARF-F-272, University of Tokyo. (2012), forthcoming in
International Journal of Theoretical and Applied Finance.

Takahashi, A. and Yamada,T.: An Asymptotic Expansion with Push-Down of Malliavin Weights, STAM
Journal on Financial Mathematics Volume 3, pp 95-136, (2012)

Takahashi, A. and Yamada,T.: On Approzimation of the Solutions to Partial Differential Equations in
Finance, CARF Working Paper Series CARF-F-249, University of Tokyo. (2010)

Watanabe, S.: Analysis of Wiener Functionals (Malliavin Calculus) and its Applications to Heat Ker-
nels, The Annals pf Probability, Vol.15-1, 1-39. (1987)

34



