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Abstract

The best linear unbiased predictor (BLUP) is called a kriging predictor and has
been widely used to interpolate a spatially correlated random process in scientific
areas such as geostatistics. The BLUP is identical with the conditional expectation if
an underlying random field is Gaussian and consequently is the optimal predictor in
the mean squared error (MSE) sense. However, if an original data takes a nonnegative
value or has a skewed distribution, we frequently apply a nonlinear transformation to
it to get a data which is nearer Gaussian. Then the optimality of the BLUP for the
original data is unclear because it is not Gaussian. Moreover, in many cases, data
sets in spatial problems are often so large that a kriging predictor is impractically
time-consuming. To reduce the computational complexity, covariance tapering has
been developed by Furrer et al. (2006) for large spatial data sets. In this paper we
consider covariance tapering in a class of transformed Gaussian models for random
fields and show that the BLUP using covariance tapering, the BLUP and the optimal
predictor are asymptotically equivalent in the MSE sense if the underlying Gaussian
random field has the Matérn covariance function. This is an extension of Furrer et
al. (2006). Monte Carlo simulations support theoretical results.

Key words : Covariance tapering, Hermite polynomials, Kriging, Spatial statistics,

Spectral density, Transformed random field

1 Introduction

Interpolation of a spatially correlated random process is widely used in mining, hydrology,

forestry and other fields. This method is often called kriging in geostatistical literature. It

requires the solution of a linear equation based on the covariance matrix of observations in
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different spatial points that is the size of the number of observations. The operation count

for the direct computation of it is of order n3 with sample size n. Hence as the sample size

is larger, the computation becomes a more formidable one in practice. To deal with this

problem Furrer et al. (2006) proposed covariance tapering. The basic idea of covariance

tapering is to reduce a spatial covariance function to zero beyond some range by multiplying

the true spatial covariance function by a positive definite but compactly supported function.

Then the resulting covariance matrix is so sparse that it is much easier and faster to obtain

the solution. Furrer et al. (2006) proved the asymptotic efficiency of the BLUP using

covariance tapering which we call the tapered BLUP for the original BLUP. Furthermore,

Zhu and Wu (2010) investigated properties of covariance tapering for convolution-based

nonstationary models and proved that the tapered BLUP is asymptotically efficient in

specific assumptions. An alternative approach to reduce the computational time is to

calculate a spatial prediction based on a small and manageable number of observations

that are given in points close to a prediction point. This approach often shows good

performance. However, it is not clear how we may choose samples in a neighborhood of

the prediction point and theoretical properties are not derived completely. On the other

hand, in covariance tapering it is shown that the MSE ratio of the tapered BLUP and the

true BLUP converges to 1 as the sample size goes to infinity regardless of the selection of

the taper range (Furrer et al. 2006).

Covariance tapering is also used for the estimation of parameters of a covariance func-

tion. The log-likelihood function of Gaussian random fields includes the determinant and

the inverse of the covariance matrix between the observations in different spatial points,

which is difficult to calculate for large data sets. Kaufman et al. (2008) applied covari-

ance tapering to the log-likelihood function and showed that the estimators maximizing

the tapered approximation of the log-likelihood are strongly consistent. Du et al. (2009)

proved that this tapered maximum likelihood estimator has the asymptotic normality in

one dimensional case. Recently, Wang and Loh (2011) showed the asymptotic normality of

the tapered maximum likelihood estimator in multidimensional case by letting the taper

range converge to 0 when the sample size goes to infinity.

The BLUP is identical with the conditional expectation if an underlying random field

is Gaussian and consequently is the optimal predictor in the MSE sense. However, if an

original data takes a nonnegative value or has a skewed distribution, we frequently apply

a nonlinear transformation to it to get a data which is nearer Gaussian. Typical ones are

a chi-squared process and a lognormal process (Cressie 1993). For example a precipitation

data is approximately regarded as a chi-squared process because the standardized square
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root values known as anomalies are closer to a Gaussian distribution (Johns et al. 2003;

Furrer et al. 2006). On the other hand the variable such as topsoil concentrations of cobalt

and copper takes a positive value and has a right skewed sampling distribution. This kind of

spatial data is often obtained in large numbers and modeled by the lognormal distribution

(Moyeed and Papritz 2002; De Oliveira 2006). However the optimality of the BLUP and

the tapered BLUP for an original data is not clear because it is non-Gaussian. In this paper

we show that the tapered BLUP and the BLUP in a class of transformed Gaussian models

for random fields are asymptotically equivalent to the conditional expectation, which is the

optimal predictor in the MSE sense. This is an extension of Furrer et al.(2006).

Granger and Newbold (1976) considered a class of the transformed models in a time

series context and calculated the mean, the covariance function and the mean squared error

of predictors. Our work can be also regarded as an extension of their results to spatial

processes. Moreover since the conditional mean and the BLUP include the inverse of the

covariance matrix, covariance tapering is useful to reduce the computational difficulty.

The subsequent sections are organized as follows. We introduce a kriging predictor

and asymptotic properties in Section 2. In Section 3, we introduce a class of transformed

Gaussian models for random fields and covariance tapering and then prove that the tapered

BLUP of transformed random fields has the asymptotic efficiency with respect to the

optimal predictor. In Section 4, computer experiments are conducted. A conclusion and

future studies are mentioned in Section 5. Supplementary materials and proofs of the

lemmas, the corollary and the theorem are given in Appendices A-D.

2 Spatial prediction and its asymptotic properties

Let {Z(s), s ∈ Rd} be a random field with known constant mean and covariance function.

Suppose we have observations from a single realization of the random field Z(s), denoted

by Z = (Z(s1), . . . , Z(sn))′, measured at sampling locations s1, . . . , sn ∈ Rd. The goal

is to predict Z(s0) at an unobserved location s0 ∈ Rd based on Z. Then the best linear

unbiased predictor (BLUP) and its mean squared error (MSE) are

ẐBLUP (s0) = µZ + c′ZΣ−1
Z (Z − µZ · 1), (1)

E[ẐBLUP (s0)− Z(s0)]
2 = σ2

Z − c′ZΣ−1
Z cZ , (2)

where µZ = E[Z(s)], σ2
Z = var(Z(s0)), (cZ)i = cov(Z(s0), Z(si)), (ΣZ)ij = cov(Z(si),

Z(sj)) (i, j = 1, . . . , n) and 1 = (1, . . . , 1)′. ẐBLUP (s0) and E[ẐBLUP (s0) − Z(s0)]
2 are

called as the simple kriging predictor and the simple kriging variance of Z(s0) respectively

(see, e.g., Cressie 1993; Stein 1999).
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Hereafter we assume that {Z(s)} is a stationary random field and the covariance func-

tion C(h) is defined by

C(h) = cov(Z(s), Z(s + h)), h ∈ Rd.

In what follows, we write hi = si − s0,hij = si − sj (i, j = 1, . . . , n).

Now we will review some asymptotic properties of the kriging predictor using an in-

correct covariance function, which are used in the proof of our main theorem. Hereafter

we assume that sampling locations s1, . . . , sn are in D ⊂ Rd where D is a bounded sub-

set and a prediction point s0 ∈ D is an accumulation point of {si, i = 1, 2, . . .}, that is,

s0 ∈ {si, i = 1, 2, . . .} where {si, i = 1, 2, . . .} is the closure of {si, i = 1, 2, . . .}. This as-

sumption is called infill asymptotics and often used as an asymptotic framework in spatial

statistics (Cressie 1993).

C0(h) and C1(h) denote the covariance functions of the true and the assumed models

respectively. Then from (1) the BLUP under Ci(h) (i = 0, 1) is ẐBLUP (s0, Ci) = µZ +

c′iΣ
−1
i (Z−µZ ·1) where (ci)k = Ci(hk) and (Σi)kl = Ci(hkl) (k, l = 1, . . . , n). Let Z∗(s0) be

a predictor of Z(s0) and let ECi
[Z∗(s0)−Z(s0)]

2 be the MSE of Z∗(s0) under Ci (i = 0, 1).

This MSE may depend not only on Ci but also on other distributional properties if Z∗(s0)

is a nonlinear predictor. Then Z∗(s0) is called a consistent predictor if

EC0 [Z
∗(s0)− Z(s0)]

2 → 0 as n →∞.

Furthermore, a consistent predictor Z∗(s0) is called asymptotically efficient with respect

to the BLUP ẐBLUP (s0, C0) if

EC0 [Z
∗(s0)− Z(s0)]

2

EC0 [Ẑ
BLUP (s0, C0)− Z(s0)]2

→ 1 as n →∞.

Next let Ẑ(s0) be the optimal predictor of Z(s0) which minimizes the MSE under the true

model. Then if
EC0 [Z

∗(s0)− Z(s0)]
2

EC0 [Ẑ(s0)− Z(s0)]2
→ 1 as n →∞,

Z∗(s0) is called asymptotically efficient with respect to the optimal predictor Ẑ(s0). If

{Z(s)} is Gaussian, the two definitions of the asymptotic efficiency are equivalent because

Ẑ(s0) = ẐBLUP (s0, C0).

Stein (1993) gave the following sufficient conditions for the asymptotic efficiency of the

incorrect kriging predictor with respect to the BLUP. Hereafter, ‖ · ‖ means the Euclidean

norm and a function is called bandlimited if it is the Fourier transform of a function with

bounded support.
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Theorem 1 (Stein(1993)) Let fi(λ),λ ∈ Rd be the spectral density function of Ci(h)

(i = 0, 1). Suppose that

0 < lim inf
‖–‖→∞

f0(λ)/|φ(λ)|2 ≤ lim sup
‖–‖→∞

f0(λ)/|φ(λ)|2 < ∞, (3)

where φ(λ) is bandlimited and lim‖–‖→∞ f1(λ)/f0(λ) = c (> 0). Then as n →∞

EC0 [Ẑ
BLUP (s0, C1)− Z(s0)]

2

EC0 [Ẑ
BLUP (s0, C0)− Z(s0)]2

=
C0(0)− 2c0

′Σ1
−1c1 + c1

′Σ1
−1Σ0Σ1

−1c1

C0(0)− c0
′Σ−1

0 c0

→ 1

and

EC1 [Ẑ
BLUP (s0, C1)− Z(s0)]

2

EC0 [Ẑ
BLUP (s0, C1)− Z(s0)]2

=
C1(0)− c′1Σ

−1
1 c1

C0(0)− 2c0
′Σ1

−1c1 + c1
′Σ1

−1Σ0Σ1
−1c1

→ c.

It is known that if

0 < lim inf
‖–‖→∞

f0(λ)‖λ‖r ≤ lim sup
‖–‖→∞

f0(λ)‖λ‖r < ∞

for some r > d, then (3) is satisfied (see Stein 1993, p.402). Theorem 1 states that the

low frequency behavior of the spectral density function has little impact on the kriging

prediction.

3 Covariance tapering in transformed random fields

This section introduces a class of transformed Gaussian models for random fields and

covariance tapering and derives the asymptotic optimality of the tapered BLUP.

3.1 Transformed random fields

Assume that {Y (s), s ∈ D ⊂ Rd} is an isotropic Gaussian random field with mean µY =

E[Y (s)] and Matérn covariance function defined by

CY (‖h‖) =
σ2

Y

2ν−1Γ(ν)
(α‖h‖)νKν(α‖h‖), α > 0, ν > 0, σ2

Y > 0,

where Kν(·) is the modified Bessel function of the second kind of order ν (see, e.g., Cressie

1993; Stein 1999). The spectral density function of this covariance function is

fY (‖λ‖) =
Aσ2

Y

(α2 + ‖λ‖2)ν+d/2
,
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where A = (Γ(ν+d/2)α2ν)/(πd/2Γ(ν)). For example if ν = 0.5, Matérn covariance function

is

CY (‖h‖) = σ2
Y exp(−α‖h‖).

It is called the exponential covariance function and widely used in many applications. For

simplicity, we set µY = 0 and σ2
Y = 1.

Now let Z(s) = T (Y (s)) be an observable random field with the underlying field {Y (s)}
where T (x) is an unknown real function, which satisfies

∫∞
−∞ T (x)2φ(x)dx < ∞ and φ(x) =

e−x2/2/
√

2π is the density function of N(0, 1). Then Z(s) can be expressed by an infinite

sum of Hermite polynomials

Z(s) =
∞∑

j=0

αjHj(Y (s)),

where Hj(x) (j = 0, 1, 2, . . .) is the j-th order Hermite polynomial (see Appendix A for

properties of Hermite polynomials). Note that αj’s depend on T . By (A.1) and (A.3) of

Appendix A,

µZ = E[Z(s)] = α0, (4)

CZ(‖h‖) = Cov(Z(s), Z(s + h)) =
∑
j≥1

α2
jj!(CY (‖h‖))j. (5)

Next we will derive the optimal predictor in transformed random fields by a similar discus-

sion of Granger and Newbold (1976).

Define

W (s0) =
Y (s0)− c′Y Σ−1

Y Y√
1− c′Y Σ−1

Y cY

,

where Y = (Y (s1), . . . , Y (sn))′, (cY )i = CY (‖hi‖) and (ΣY )ij = CY (‖hij‖) (i, j =

1, . . . , n). Then the conditional distribution of W (s0) given Y is N(0, 1) and Y (s0) is

expressed by

Y (s0) =
√

1− c′Y Σ−1
Y cY W (s0) + c′Y Σ−1

Y Y .

Then from (2.7.6) of Brockwell and Davis (1991; page 63), (A.2) and (A.5) of Appendix
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A, the optimal predictor Ẑ(s0) of Z(s0), that is, the conditional mean given Y is

Ẑ(s0) = E[Z(s0)|Y ]

=
∞∑

j=0

αjE


Hj




√
1− c′Y Σ−1

Y cY W (s0) +
√

c′Y Σ−1
Y cY

c′Y Σ−1
Y Y√

c′Y Σ−1
Y cY




∣∣∣∣∣Y



=
∞∑

j=0

αjE

[
j∑

k=0

(
j
k

)(√
1− c′Y Σ−1

Y cY

)k (√
c′Y Σ−1

Y cY

)j−k

Hk(W (s0))

×Hj−k


 c′Y Σ−1

Y Y√
c′Y Σ−1

Y cY




∣∣∣∣∣Y



=
∞∑

j=0

αj

j∑

k=0

(
j
k

)(√
1− c′Y Σ−1

Y cY

)k (√
c′Y Σ−1

Y cY

)j−k

Hj−k


 c′Y Σ−1

Y Y√
c′Y Σ−1

Y cY




× E[Hk(W (s0))|Y ]

=
∞∑

j=0

αj

(√
c′Y Σ−1

Y cY

)j

Hj


 c′Y Σ−1

Y Y√
c′Y Σ−1

Y cY


 , (6)

and from (A.1) of Appendix A, its mean squared error is

E[Ẑ(s0)− Z(s0)]
2 = E[Z(s0)]

2 − E[Ẑ(s0)]
2

=
∞∑

j=1

α2
jj!−

∞∑
j=1

α2
jj!(c

′
Y Σ−1

Y cY )j. (7)

Ẑ(s0) is infeasible because T (·) is unknown. From (1) and (2), the BLUP of Z(s0) is

ẐBLUP (s0) = µZ + c′ZΣZ
−1(Z − µZ · 1),

and its mean squared error is

E[ẐBLUP (s0)− Z(s0)]
2 = CZ(0)− c′ZΣ−1

Z cZ ,

where Z = (Z(s1), . . . , Z(sn))′ = (T (Y (s1)), . . . , T (Y (sn)))′, (cZ)i = CZ(‖hi‖) and (ΣZ)ij =

CZ(‖hij‖) (i, j = 1, . . . , n). Hereafter we assume that µz = α0 and CZ(‖h‖) are known. If

they are unknown, the BLUP and the tapered BLUP introduced in the next section are

also infeasible as the optimal predictor is. However, the estimators of these predictors are

easily constructed by the sample mean and covariance of the observable {Z(s)}. Whereas

that of the optimal predictor depends on the unobservable {Y (s)} and requires a rather

difficult procedure. A more rigorous discussion on the BLUP and the tapered BLUP with

estimated coefficients is left for a future study. Some comments are given in Section 5.
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3.2 Covariance tapering

The computational complexity of ẐBLUP (s0) is challenging for large spatial data sets be-

cause it includes the inverse of the covariance matrix with the same size as the number of

observations. To reduce the computational burden, covariance tapering has been developed

by Furrer et al. (2006). They show the asymptotic optimality of covariance tapering in the

Gaussian random field with Matérn covariance function, which corresponds to the case of

T (x) = x in the framework of the transformed random field.

We will review the result of Furrer et al. (2006). Let T (x) = x and hence Z(s) = Y (s)

in this subsection. From (1) and (2), the BLUP of Y (s0) and its MSE are defined by

Ŷ BLUP (s0) = c′Y Σ−1
Y Y ,

E[Ŷ BLUP (s0)− Y (s0)]
2 = 1− c′Y Σ−1

Y cY .

Let Cθ(x) be a compactly supported correlation function with Cθ(0) = 1 and Cθ(x) = 0

for x ≥ θ. Cθ(x) is called the taper function with the taper range θ. Then consider the

product of the original covariance function and the taper function, that is

CY
tap(‖h‖) = CY (‖h‖)Cθ(‖h‖).

Now we replace CY (‖h‖) in Ŷ BLUP (s0) with CY
tap(‖h‖) and obtain the tapered BLUP

Ŷ tapBLUP (s0) = ctap
Y

′
Σtap

Y

−1
Y ,

where (ctap
Y )i = CY

tap(‖hi‖) and (Σtap
Y )ij = CY

tap(‖hij‖) (i, j = 1, . . . , n). The resulting

covariance matrix Σtap
Y has many zero elements and is called a sparse matrix, so that it

is much faster to calculate Σtap
Y

−1
Y than Σ−1

Y Y . Next let fθ(‖λ‖) be the spectral density

function of Cθ(‖h‖). Then Furrer et al. (2006) imposed the following condition.

Taper condition: For some ε > 0 and Mθ < ∞

0 < fθ(‖λ‖) ≤ Mθ

(1 + ‖λ‖2)ν+d/2+ε
.

Although Ŷ tapBLUP (s0) is not the BLUP under the true covariance function CY (·),
Furrer et al. (2006) showed that this predictor is asymptotically efficient with respect to

the BLUP.

Theorem 2 (Furrer et al. (2006)) If fθ satisfies the taper condition, Theorem 1 holds

with C0 = CY，C1 = CY Cθ, that is

ECY
[Ŷ tapBLUP (s0)− Y (s0)]

2

ECY
[Ŷ BLUP (s0)− Y (s0)]2

=
1− 2cY

′Σtap
Y

−1
ctap

Y + ctap
Y

′
Σtap

Y

−1
ΣY Σtap

Y

−1
ctap

Y

1− c′Y Σ−1
Y cY

→ 1 as n →∞.
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Theorem 2 also means the asymptotic efficiency of the tapered BLUP with respect to

the optimal predictor because Ŷ BLUP is the optimal predictor in the Gaussian random field

{Y (s)}.
In this paper, we shall show that for any transformation T (x) the tapered BLUP of

Z(s0) is asymptotically efficient not only with respect to ẐBLUP (s0) but also with respect

to Ẑ(s0).

3.3 Main result

As in Furrer et al. (2006), the tapered BLUP of Z(s0) is defined by

ẐtapBLUP (s0) = µZ + ctap
Z

′
Σtap

Z

−1
(Z − µZ · 1),

where (ctap
Z )i = CZ

tap(‖hi‖), (Σtap
Z )ij = CZ

tap(‖hij‖) and CZ
tap(‖h‖) = CZ(‖h‖)Cθ(‖h‖) (i, j =

1, . . . , n). Hereafter it is assumed that 0 <
∑∞

j=1 α2
jj!j otherwise αj = 0 for any j ≥ 1 and

Z(s) = T (Y (s)) = c where c is a constant. E[Ẑ(s0)−Z(s0)]
2 of (7) and E[ẐtapBLUP (s0)−

Z(s0)]
2 are denoted by ECZ

[Ẑ(s0)− Z(s0)]
2 and ECZ

[ẐtapBLUP (s0)− Z(s0)]
2 to highlight

the expectation under the true model for the observable process {Z(s)} though Z(s) and

CZ are functions of the underlying Y (s) and CY respectively.

The following theorem is our main result.

Theorem 3 Suppose that
∑∞

j=1 α2
jj!j

2ν+d+max{1,2ε} < ∞ where ε is given in the taper

condition. If fθ satisfies the taper condition, the tapered BLUP, the BLUP and the optimal

predictor are asymptotically equivalent in the MSE sense, that is

ECZ
[ẐtapBLUP (s0)− Z(s0)]

2

ECZ
[Ẑ(s0)− Z(s0)]2

=
CZ(0)− 2cZ

′Σtap
Z

−1
ctap

Z + ctap
Z

′
Σtap

Z

−1
ΣZΣtap

Z

−1
ctap

Z∑∞
j=1 α2

jj!−
∑∞

j=1 α2
jj!(c

′
Y Σ−1

Y cY )j

→ 1,

ECZ
[ẐtapBLUP (s0)− Z(s0)]

2

ECZ
[ẐBLUP (s0)− Z(s0)]2

→ 1

and

ECZ
[ẐBLUP (s0)− Z(s0)]

2

ECZ
[Ẑ(s0)− Z(s0)]2

→ 1

as n →∞.

Theorem 3 states an extension of Theorem 2 by Furrer et al. (2006) in terms of the

asymptotic efficiency of the tapered BLUP not only with respect to the BLUP but also with

respect to the optimal nonlinear predictor. Moreover, it is also shown that the BLUP is
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asymptotically efficient with respect to the optimal one. One may evaluate the presumed

mean squared error ECZ
tap

[ẐtapBLUP (s0) − Z(s0)]
2 = CZ

tap(0) − ctap
Z

′
Σtap

Z

−1
ctap

Z to assess a

prediction uncertainty. The following corollary shows that in the transformed model it is

asymptotically equivalent to the MSE of the optimal predictor.

Corollary 1 Under the conditions of Theorem 3,

ECZ
tap

[ẐtapBLUP (s0)− Z(s0)]
2

ECZ
[Ẑ(s0)− Z(s0)]2

→ 1 as n →∞.

The tapered BLUP can be calculated by using the only observable data {Z(s)} when

the transformation T (·) is unknown. However, to justify the practical use of the tapered

BLUP, the property of the plug-in predictor must be investigated. It is a future work.

We give two examples, which are often applied to an empirical analysis.

EXAMPLE 1 (The squared transformation). If Z(s) = (σY (s) + µ)2, σ > 0 and Y (s) ∼
N(0, 1), Z(s) has the following expression using Hermite polynomials

Z(s) = σ2H2(Y (s)) + 2µσH1(Y (s)) + (µ2 + σ2)H0(Y (s)).

Since α0 = µ2 + σ2, α1 = 2µσ, α2 = σ2 and αj = 0, j ≥ 3, clearly the assumption of

Theorem 3 is satisfied. Then from (4) - (7),

µZ = µ2 + σ2,

CZ(‖h‖) = 4µ2σ2CY (‖h‖) + 2σ4(CY (‖h‖))2,

Ẑ(s0) = (σcY
′Σ−1

Y Y + µ)2 + σ2(1− cY
′Σ−1

Y cY )

and

E[Ẑ(s0)− Z(s0)]
2 = 4µ2σ2(1− cY

′Σ−1
Y cY ) + 2σ4{1− (cY

′Σ−1
Y cY )2}.

In general, for any finite order polynomial Z(s) =
∑m

j=0 aj(σY (s) + µ)j with aj ∈ R
and m < ∞, the corresponding coefficients αj of the Hermite polynomials satisfy the

assumption of Theorem 3 because αj = 0 (j > m).

EXAMPLE 2 (The exponential transformation). Consider the following transformation

Z(s) = exp(σY (s) + µ),
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where Y (s) ∼ N(0, 1). This kind of random fields Z(s) is called a log-Gaussian random

field. Then by (A.4) of Appendix A,

Z(s) = exp

(
µ +

σ2

2

) ∞∑
j=0

σj

j!
Hj(Y (s)).

Since αj = exp(µ + σ2/2)σj/j!, the assumption of Theorem 3 is satisfied. It follows from

(4) - (7) and (A.4) of Appendix A that

µZ = exp

(
µ +

σ2

2

)
,

CZ(‖h‖) = µ2
Z{exp(σ2CY (‖h‖))− 1},

Ẑ(s0) = exp

(
µ +

σ2

2

) ∞∑
j=0

σj

j!

(√
c′Y Σ−1

Y cY

)j

Hj


 c′Y Σ−1

Y Y√
c′Y Σ−1

Y cY




= exp

(
σc′Y Σ−1

Y Y + µ +
σ2 − σ2c′Y Σ−1

Y cY

2

)
(8)

and

E[Ẑ(s0)− Z(s0)]
2 = µ2

Z{exp(σ2)− exp(σ2c′Y Σ−1
Y cY )}.

The approach to calculate this nonlinear optimal predictor (8) is known as the lognormal

simple kriging (Wackernagel 2003). It is known that the lognormal simple kriging predictor

is superior to the BLUP in log-Gaussian random field in the MSE sense (e.g., Cressie 1993;

Wackernagel 2003). However, they are asymptotically equivalent under infill asymptotics

when the underlying Gaussian random field has the Matérn covariance function.

Remark 1. The assumption
∑∞

j=1 α2
jj!j

2ν+d+max{1,2ε} < ∞ is relaxed for some ν. If

ν = 0.5, fZ(‖λ‖) has the analytical form,

fZ(‖λ‖) =
∑
j≥1

α2
jj!

(2π)d

∫

Rd

(CY (‖h‖))j exp(−iλ′h)dh

=
∞∑

j=1

α2
jj!

(2π)d

∫

Rd

exp(−αj‖h‖) exp(−iλ′h)dh

=
Γ((d + 1)/2)α

π(d+1)/2

∞∑
j=1

α2
jj!j

((αj)2 + ‖λ‖2)(d+1)/2
.

Consequently a weaker condition
∑∞

j=1 α2
jj!j < ∞ than

∑∞
j=1 α2

jj!j
2ν+d+max{1,2ε} < ∞ is

sufficient for Theorem 3.
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Remark 2. The tapered BLUP is based on the observed data {Z(s)}. If T (·) is known,

we can apply a tapering technique to the underlying Gaussian random field and have

Ẑtap(s0) =
∞∑

j=0

αj

(√
ctap

Y

′
Σtap

Y

−1
ΣY Σtap

Y

−1
ctap

Y

)j

Hj


 ctap

Y

′
Σtap

Y

−1
Y√

ctap
Y

′
Σtap

Y

−1
ΣY Σtap

Y

−1
ctap

Y


 ,

where {Y (s)} is a Gaussian random field with zero-mean and unit variance. If Ẑtap(s0)

converges in mean square, by (A.1) and (A.3) of Appendix A, Ẑtap(s0) is an unbiased

predictor and

ECZ
[Ẑtap(s0)− Z(s0)]

2 =
∞∑

j=0

α2
jj!− 2

∞∑
j=0

α2
jj!(c

tap
Y

′
Σtap

Y

−1
cY )j

+
∞∑

j=0

α2
jj!(c

tap
Y

′
Σtap

Y

−1
ΣY Σtap

Y

−1
ctap

Y )j.

Ẑtap(s0) is well defined and has the consistency in the previous two examples.

However, the MSE of Ẑtap(s0) seems to be more erratic than that of ẐtapBLUP (s0)

in some simulations. Whether the asymptotic efficiency of Ẑtap(s0) with respect to the

optimal predictor holds is a future study.

4 Computational experiments

We conduct Monte Carlo simulation by using MATLAB. Firstly we see the convergence

and the finite sample accuracy of Theorem 3 for different sample sizes, taper ranges and

smoothness of covariance functions. Since

ECZ
[Ẑ(s0)− Z(s0)]

2 ≤ ECZ
[ẐBLUP (s0)− Z(s0)]

2 ≤ ECZ
[ẐtapBLUP (s0)− Z(s0)]

2,

we see the ratios of the MSE of the tapered BLUP and that of the optimal predictor. Next

the time required for one calculation of predictors is measured. Finally, we compare the

tapered BLUP with the BLUP obtained by an iterative method, which is more time saving

than the direct method. The examples of Section 3 are used for the transformation T (·).
Let D = [−1, 1]2 be the sampling domain. The data locations {si}i≥1 are sampled from

a uniform distribution over D. The spatial prediction is for the center location s0 = (0, 0).

This sampling scheme satisfies infill asymptotics (see Lemma D. 1 in Appendix D).

For a fixed configuration of sampling locations {si, i = 1, 2, . . . , n}, each expectation in

the ratio of the MSE of the tapered BLUP and that of the optimal predictor is approximated

by sample mean of 1000 simulations. We iterate this procedure 100 times and calculate

12



Table 1: Summary of simulation results in the first experiment for θ = 0.8.

Squared case Exponential case

ν n Mean Stdev 95% interval Mean Stdev 95% interval

0.5 100 1.250 0.059 [1.140, 1.349] 1.152 0.031 [1.085, 1.212]
300 1.057 0.022 [1.015, 1.097] 1.037 0.029 [0.981, 1.093]
500 1.039 0.013 [1.013, 1.065] 1.024 0.021 [0.981, 1.056]

1.0 100 1.567 0.103 [1.357, 1.767] 1.287 0.060 [1.165, 1.395]
300 1.098 0.023 [1.057, 1.147] 1.075 0.036 [0.982, 1.113]
500 1.051 0.015 [1.019, 1.083] 1.045 0.032 [0.971, 1.106]

1.5 100 2.064 0.178 [1.724, 2.421] 1.448 0.099 [1.258, 1.651]
300 1.168 0.035 [1.095, 1.238] 1.123 0.065 [0.962, 1.236]
500 1.074 0.019 [1.032, 1.109] 1.070 0.040 [0.996, 1.159]

mean, standard deviation and 95% interval of the approximated ratios to see the variability

of the MSE ratio. σ2 and α are determined so that CZ(0) = 1 and CZ decreases to 0.05

over the distance 0.8 to examine the influence of different transformations, taper ranges

and the smoothness parameter ν of the covariance function. Therefore σ2 and α depend

on each transformation and ν. We use Wendland2 taper function

Cθ(‖h‖) =

(
1− ‖h‖

θ

)6

+

(
1 + 6

‖h‖
θ

+
35‖h‖2

3θ2

)
,

which was introduced by Wendland (1995) and satisfies the taper condition if d = 2 and

ν < 2.5 (Furrer et al. 2006).

The first experiment examines the convergence and the accuracy of the ratio between

the MSE of the tapered BLUP and that of the optimal predictor for different ν. The

smoothness parameter is ν = 0.5, 1.0 and 1.5 and the taper range is θ = 0.8. The sample

size is 100, 300 and 500. Table 1 shows that as ν is larger, the MSE ratio and fluctuations

increase because the discrepancy between the true covariance function and the tapered one

is larger in the small distance in this simulation.

The second one examines the convergence and the accuracy of the MSE ratio with

different taper ranges. The sample size is 100, 300 and 500 for θ = 0.6 and 0.75, wider

ranges and is 300, 1000, 2000 and 3000 for θ = 0.15 and 0.3, narrower ranges respectively.

The smoothness parameter is ν = 0.5 and 1.5.

Tables 2 and 3 summarize the results. The number in the parentheses is the average

of the number of locations falling within the taper range in 100 sets of the data locations

sampled from a uniform distribution over D. As θ decreases, the MSE ratio increases

because the discrepancy between the true covariance function and the tapered one is larger

and the sample size within the taper range is smaller when θ is smaller. If we choose the

13



Table 2: Summary of simulation results in the second experiment for ν = 0.5.

Squared case Exponential case

θ n Mean Stdev 95% interval Mean Stdev 95% interval

0.6 100 1.411 0.082 [1.243, 1.553] 1.282 0.055 [1.184, 1.403]
300 (84) 1.075 0.027 [1.023, 1.126] 1.050 0.034 [0.979, 1.125]
500 (143) 1.046 0.016 [1.013, 1.077] 1.034 0.028 [0.979, 1.089]

0.75 100 1.283 0.064 [1.160, 1.390] 1.175 0.040 [1.102, 1.266]
300 (132) 1.060 0.023 [1.016, 1.101] 1.039 0.029 [0.990, 1.10]
500 (222) 1.040 0.014 [1.013, 1.067] 1.026 0.020 [0.988, 1.067]

0.15 300 (5) 1.897 0.153 [1.641, 2.232] 1.736 0.143 [1.475, 2.203]
1000 (18) 1.313 0.076 [1.175, 1.464] 1.283 0.081 [1.125, 1.422]
2000 (35) 1.096 0.031 [1.035, 1.149] 1.079 0.047 [0.973, 1.181]
3000 (52) 1.033 0.018 [0.995, 1.068] 1.031 0.032 [0.971, 1.080]

0.3 300 (21) 1.233 0.066 [1.103, 1.347] 1.191 0.066 [1.032, 1.30]
1000 (71) 1.069 0.024 [1.027, 1.119] 1.055 0.037 [0.983, 1.118]
2000 (141) 1.021 0.013 [0.994, 1.043] 1.018 0.022 [0.978, 1.066]
3000 (213) 1.011 0.008 [0.997, 1.026] 1.006 0.016 [0.962, 1.033]

taper range such that the number of the samples within it is greater than 70 in the case of

ν = 0.5, the percentage increase of the MSE of the tapered BLUP over that of the optimal

predictor seems to be within about 7%. In the case of ν = 1.5, it seems that the taper range

such that the number of the samples within it is greater than 140 is a safe choice. Except

the small n the exponential transformation has slightly larger variability than the squared

one although the mean of the exponential one is closer to 1 than that of the squared one.

This suggests that the convergence rate of Theorem 3 may depend on the transformation.

Since the MSE ratio converges to 1 as n is larger regardless of the taper range, Tables 2

and 3 support the result of Theorem 3.

Next we consider the computational times of the true optimal predictor, the BLUP

and the tapered BLUP for one fixed realization. The computational time of the optimal

predictor is measured as the benchmark, though it is infeasible in practice. We put ν = 0.5

and θ = 0.15, 0.3 and 0.6 for the squared transformation. All computations are carried out

by using the MATLAB function sparse on Linux powered 3.33GHz Xeon processor with

8 Gbytes RAM. For the calculation of the sparse matrix, there is also the R package spam

(Furrer and Sain 2010). The sample size n is from 1000 to 9000 with the increment 1000.

Figure 1 shows that covariance tapering reduces the computational time substantially for

θ = 0.15 and 0.3. However, it does not work well for θ = 0.6. It seems that as θ increases

the calculation of some algorithm specific to solve a linear equation of a sparse matrix takes

much more time and offsets the computational efficiency. For n = 6000, the percentages of
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Table 3: Summary of simulation results in the second experiment for ν = 1.5.

Squared case Exponential case

θ n Mean Stdev 95% interval Mean Stdev 95% interval

0.6 100 2.986 0.276 [2.503, 3.605] 1.864 0.121 [1.645, 2.107]
300 (84) 1.201 0.045 [1.112, 1.288] 1.131 0.060 [1.025, 1.244]
500 (143) 1.091 0.026 [1.034, 1.141] 1.085 0.044 [0.986, 1.169]

0.75 100 2.258 0.205 [1.950, 2.736] 1.535 0.10 [1.321, 1.724]
300 (132) 1.184 0.038 [1.104, 1.264] 1.121 0.060 [1.032, 1.236]
500 (222) 1.077 0.019 [1.040, 1.119] 1.079 0.039 [1.012, 1.161]

0.15 300 (5) 28.739 3.123 [23.402, 35.521] 13.566 1.884 [10.228, 18.068]
1000 (18) 15.488 1.978 [11.871, 19.496] 7.339 1.003 [5.348, 9.221]
2000 (35) 1.178 0.050 [1.086, 1.275] 1.163 0.066 [1.033, 1.283]
3000 (52) 1.051 0.025 [1.006, 1.095] 1.046 0.035 [0.972, 1.098]

0.3 300 (21) 4.559 0.467 [3.734, 5.436] 2.746 0.370 [2.116, 3.511]
1000 (71) 1.152 0.034 [1.078, 1.213] 1.140 0.059 [1.018, 1.261]
2000 (141) 1.10 0.036 [1.037, 1.176] 1.076 0.048 [0.994, 1.181]
3000 (213) 1.030 0.016 [1.0, 1.058] 1.021 0.021 [0.979, 1.052]

non-zero entries in the tapered covariance matrix, that is the sparsity of the matrices, are

1.6%, 6.3% and 21.6% for θ = 0.15, 0.3 and 0.6 respectively.
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Figure 1: The time required for the calculation of each predictor for various taper ranges.

Finally we consider an iterative method to solve the linear equation of the BLUP. It is

known that iterative methods have a lower operation count than direct methods. Here we

focus on the conjugate gradient method without preconditioning a linear system (Golub

et al. 1996) and apply to ẐBLUP . We put n = 1000, 3000, ν = 0.5 and θ = 0.15, 0.3. The

count of iterations is 40 and 80. The exponential transformation is used and the number of

replications is 1000. From tables 4 and 5 the tapered BLUP by using the direct method is

much more time saving than the BLUP with the iterative method. Furthermore, its MSE
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Table 4: The time required for the calculation of the BLUP by using the conjugate gradient
method.

n iteration MSE ratio Time (sec.)

1000 40 1.045 0.573
80 1.019 1.139

3000 40 1.044 5.362
80 1.004 10.827

Table 5: The time required for the calculation of the tapered BLUP by using the direct
method.

n taper range MSE ratio Time (sec.)

1000 0.15 1.244 0.015
0.3 1.072 0.021

3000 0.15 1.036 0.131
0.3 1.004 0.422

ratio to the optimal predictor is almost equal to that of the BLUP for sufficiently large n.

It is a future work to find an efficient preconditioner and compare ẐBLUP to ẐtapBLUP by

using the conjugate gradient method.

5 Conclusion and future studies

This paper studies covariance tapering for prediction of large spatial data sets in trans-

formed random fields and shows the asymptotic efficiency of the tapered BLUP not only

with respect to the BLUP but also with respect to the optimal predictor. Monte Carlo

simulations support theoretical results. This result provides a contribution to the analysis

of non-Gaussian large spatial data sets and the nonlinear prediction, especially when the

transformation is unknown and the optimal predictor is infeasible.

However the case of unknown parameters must be considered in future. Firstly for

{Z(s)}, µZ and ν are crucial ones by the following reason. Assume that µZ and ν are

correctly specified and consider the spectral density function

fM(‖λ‖) =
σ̃2

(α̃2 + ‖λ‖2)ν+d/2
,

for any α̃ > 0 and σ̃2 > 0. Then similar to Theorem 3, the tapered BLUP based on

µZ and the covariance function for fM(‖λ‖) is also asymptotically efficient with respect
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to the optimal predictor. The mean µZ may be estimated by the sample mean of the

observations Z = (Z(s1), . . . , Z(sn))′ or a more efficient estimator. Since ν determines

the high frequency behavior of fM(‖λ‖), it may be estimated nonparametrically at high

frequency bands by using Fourier transforms of Z = (Z(s1), . . . , Z(sn))′ (see, e.g., Fuentes

and Reich 2010).

Next the estimation of T (x) should be considered. If T (x) is correctly specified, it

can be helpful to check the condition in Theorem 3 and determine an appropriate range

parameter θ. One candidate for T−1(x) (not T (x)) may be the Box-Cox transformation

(Box and Cox 1964). Then we have to take account of the instability of its identification

which can have a serious effect on the estimation of the parameters (Bickel and Doksum

1981).

Finally how does the tapered BLUP with estimated parameters work well? Putter and

Young(2001) considered a related topic. However it seems to need another consideration

in our setting as Stein (2010) points out.

Appendix A : Properties of Hermite Polynomials

In this appendix, we state some relevant results on properties of Hermite polynomials

(Granger and Newbold 1976; Gradshteyn and Ryzhik 2007; Olver et al. 2010). The system

of Hermite polynomials Hn(x) is defined by Hn(x) = exp(x2/2)(−d/dx)n exp(−x2/2). For

example, H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x and so on. The Hermite polynomials are a complete orthogonal

system with respect to the standard normal probability density function. Therefore, if

X ∼ N(0, 1),

E{Hn(X)Hk(X)} =

{
0, n 6= k,

n!, n = k,
(A.1)

and since H0(x) = 1,

E{Hn(X)} = 0, n > 0. (A.2)

If X and Y are distributed as bivariate normal random vector with zero means, unit

variances and correlation coefficient ρ (−1 < ρ < 1),

E{Hn(X)Hk(Y )} =

{
0, n 6= k,

ρnn!, n = k.
(A.3)
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Finally we have

exp

(
tx− t2

2

)
=

∞∑
n=0

Hn(x)tn

n!
(A.4)

and

Hn(Ax + By) =
n∑

k=0

(
n
k

)
AkBn−kHk(x)Hn−k(y) for A2 + B2 = 1. (A.5)

Appendix B : Properties of fY and fZ

To prove the asymptotic optimality of ẐtapBLUP (s0), we shall derive some lemmas. Let

fZ denote the spectral density function of CZ , given by (5).

Lemma B. 1.

fZ(‖λ‖) =
∑
j≥1

α2
jj!f

(j−1)
Y (‖λ‖),

where

f
(0)
Y (‖λ‖) = fY (‖λ‖) =

A

(α2 + ‖λ‖2)ν+d/2
,

and f
(j−1)
Y (‖λ‖) (j ≥ 2) is the (j − 1) times convolution of fY (‖λ‖), that is

f
(j−1)
Y (‖λ‖) = A

∫

Rd

· · ·
∫

Rd

fY (‖ωj−1‖) · · · fY (‖ω1‖)
(α2 + ‖λ− ω1 − · · · − ωj−1‖2)ν+d/2

j−1∏

l=1

dωl

= fY ∗ · · · ∗ fY (‖λ‖) (say).

Proof. Note that CZ(‖h‖) =
∑

j≥1 α2
jj!(CY (‖h‖))j ≤ ∑

j≥1 α2
jj!CY (‖h‖) because 0 ≤

CY (‖h‖) ≤ 1. Moreover, from 16 of Gradshteyn and Ryzhik (2007; page 676),
∫ ∞

0

CY (r)rd−1dr =
αν

2ν−1Γ(ν)

∫ ∞

0

rν+d−1Kν(αr)dr

=
αν

2ν−1Γ(ν)
2ν+d−2α−ν−dΓ

(
d + 2ν

2

)
Γ

(
d

2

)
< ∞.

Therefore, by using polar coordinates

h =




r cos θ1

r sin θ1 cos θ2
...

r sin θ1 · · · sin θd−2 cos θd−1

r sin θ1 · · · sin θd−2 sin θd−1




= ru (‖u‖ = 1, r ≥ 0),
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∫

Rd

CZ(‖h‖)dh =

∫

∂Bd

∫ ∞

0

CZ(r)rd−1drdU(u)

≤
∑
j≥1

α2
jj!

∫

∂Bd

∫ ∞

0

CY (r)rd−1drdU(u) < ∞,

where ∂Bd is the surface of the unit sphere in Rd and U is the uniform probability measure

on ∂Bd. We have

∫

Rd

∣∣∣∣∣
∑
j≥1

α2
jj!(CY (‖h‖))j exp(−iλ′h)

∣∣∣∣∣ dh ≤
∫

Rd

∑
j≥1

α2
jj!(CY (‖h‖))jdh

=

∫

Rd

CZ(‖h‖)dh < ∞,

because 0 ≤ CY (‖h‖). Then it follows from Bochner’s theorem, the dominated convergence

theorem and the inversion formula that

fZ(‖λ‖) =
1

(2π)d

∫

Rd

CZ(‖h‖) exp(−iλ′h)dh

=
∑
j≥1

α2
jj!

(2π)d

∫

Rd

(CY (‖h‖))j exp(−iλ′h)dh

=
∑
j≥1

α2
jj!

(2π)d

∫

Rd

(∫

Rd

f
(j−1)
Y (‖ω‖) exp(iω′h)dω

)
exp(−iλ′h)dh

=
∑
j≥1

α2
jj!f

(j−1)
Y (‖λ‖),

where the third equality is derived by the property that the multiplication of the Fourier

transforms of some functions respectively is the Fourier transform of the convolution of

these functions.

Lemma B. 2. Suppose that
∑∞

j=1 α2
jj!(j − 1)2ν+d+1 < ∞. Then

0 < lim inf
‖–‖→∞

fZ(‖λ‖)‖λ‖d+2ν ≤ lim sup
‖–‖→∞

fZ(‖λ‖)‖λ‖d+2ν < ∞.

Proof. From Lemma B. 1,

fZ(‖λ‖) =A

(
α2

1

(α2 + ‖λ‖2)ν+d/2

+
∑
j≥2

α2
jj!

∫

Rd

· · ·
∫

Rd

fY (‖ωj−1‖) · · · fY (‖ω1‖)
(α2 + ‖λ− ω1 − · · · − ωj−1‖2)ν+d/2

j−1∏

l=1

dωl

)

= A(I + II) (say). (B.1)
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Then, it suffices to consider the second term II. First consider the lower bound of

fZ(‖λ‖)‖λ‖d+2ν . We have

‖λ‖d+2νII ≥
∑
j≥2

α2
jj!

∫

Rd

· · ·
∫

Rd

‖λ‖d+2νfY (‖ωj−1‖) · · · fY (‖ω1‖)
(α2 + 2‖λ‖2 + 2‖ω1 + · · ·+ ωj−1‖2)ν+d/2

j−1∏

l=1

dωl.

Since

‖λ‖d+2νfY (‖ωj−1‖) · · · fY (‖ω1‖)
(α2 + 2‖λ‖2 + 2‖ω1 + · · ·+ ωj−1‖2)ν+d/2

≤ fY (‖ωj−1‖) · · · fY (‖ω1‖)

and

∑
j≥2

α2
jj!

∫

Rd

· · ·
∫

Rd

fY (‖ωj−1‖) · · · fY (‖ω1‖)
j−1∏

l=1

dωl < ∞,

by the dominated convergence theorem,

lim inf
‖–‖→∞

‖λ‖d+2νfZ(‖λ‖) ≥ lim inf
‖–‖→∞

A

(
‖λ‖d+2νI

+
∑
j≥2

α2
jj!

∫

Rd

· · ·
∫

Rd

‖λ‖d+2νfY (‖ωj−1‖) · · · fY (‖ω1‖)
(α2 + 2‖λ‖2 + 2‖ω1 + · · ·+ ωj−1‖2)ν+d/2

j−1∏

l=1

dωl

)

= A

(
α2

1 +
1

2ν+d/2

∑
j≥2

α2
jj!

)
> 0.

Next we consider the upper bound of fZ(‖λ‖)‖λ‖d+2ν . We set λ = ρv, ω1 = r1u1, · · · ,
ωj−1 = rj−1uj−1 with ‖v‖ = ‖u1‖ = · · · = ‖uj−1‖ = 1. Then for j ≥ 2, the integral part

of (B.1) multiplied by ‖λ‖d+2ν reduces to

∫

∂Bd

· · ·
∫

∂Bd

∫ ∞

0

· · ·
∫ ∞

0

Aρd+2ν

(α2 + ‖ρv − r1u1 − · · · − rj−1uj−1‖2)ν+d/2

× A

(α2 + r2
1)

ν+d/2
· · · A

(α2 + r2
j−1)

ν+d/2

j−1∏

l=1

rd−1
l

j−1∏
m=1

drm

j−1∏
n=1

dU(un)

=

∫

{r1,··· ,rj−1,u1,··· ,uj−1|‖r1u1+···+rj−1uj−1‖≤ρ/2}
·

j−1∏
m=1

drm

j−1∏
n=1

dU(un)

+

∫

{r1,··· ,rj−1,u1,··· ,uj−1|‖r1u1+···+rj−1uj−1‖>ρ/2}
·

j−1∏
m=1

drm

j−1∏
n=1

dU(un)

=II1 + II2 (say).
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Since in {‖r1u1 + · · ·+ rj−1uj−1‖ ≤ ρ/2},
1

(α2 + ‖ρv − r1u1 − · · · − rj−1uj−1‖2)ν+d/2
≤ 1

(α2 + ρ2/4)ν+d/2
,

and for 1 ≤ k ≤ j − 1,

∫

∂Bd

∫ ∞

0

A

(α2 + r2
k)

ν+d/2
rd−1
k drkdU(uk) = 1,

II1 ≤ Aρd+2ν

(α2 + ρ2/4)ν+d/2

∫

∂Bd

· · ·
∫

∂Bd

∫ ∞

0

· · ·
∫ ∞

0

A

(α2 + r2
1)

ν+d/2
· · · A

(α2 + r2
j−1)

ν+d/2

×
j−1∏

l=1

rd−1
l

j−1∏
m=1

drm

j−1∏
n=1

dU(un)

≤A22ν+d.

On the other hand, {‖r1u1 + · · ·+rj−1uj−1‖ > ρ/2} implies that ri > ρ/(2(j−1)) for some

i (1 ≤ i ≤ j − 1). Therefore

II2 ≤
j−1∑
i=1

∫

{ri>ρ/(2(j−1))}

Aρd+2ν

(α2 + ‖ρv − r1u1 − · · · − rj−1uj−1‖2)ν+d/2

× A

(α2 + r2
1)

ν+d/2
· · · A

(α2 + r2
j−1)

ν+d/2

j−1∏

l=1

rd−1
l

j−1∏
m=1

drm

j−1∏
n=1

dU(un)

≤
j−1∑
i=1

Aρd+2ν

(
α2 + ρ2

4(j−1)2

)ν+d/2

∫

∂Bd

· · ·
∫

∂Bd

∫ ∞

0

· · ·
∫ ∞

0

× A

(α2 + ‖ρv − r1u1 − · · · − rj−1uj−1‖2)ν+d/2

A

(α2 + r2
1)

ν+d/2
· · · A

(α2 + r2
i−1)

ν+d/2

× A

(α2 + r2
i+1)

ν+d/2
· · · A

(α2 + r2
j−1)

ν+d/2

j−1∏

l=1

rd−1
l

j−1∏
m=1

drm

j−1∏
n=1

dU(un)

=

j−1∑
i=1

Aρd+2ν

(
α2 + ρ2

4(j−1)2

)ν+d/2

∫

Rd

· · ·
∫

Rd

fY (‖λ− ω1 − · · · − ωj−1‖)

× fY (‖ω1‖) · · · fY (‖ωi−1‖)fY (‖ωi+1‖) · · · fY (‖ωj−1‖)dωj−1 · · · dω1

=

j−1∑
i=1

Aρd+2ν

(
α2 + ρ2

4(j−1)2

)ν+d/2

∫

Rd

fY ∗ · · · ∗ fY (‖λ− ωi‖)dωi

≤A22ν+d(j − 1)2ν+d+1,
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because
∫

Rd

f
(i)
Y (‖ω‖)dω = (CY (0))i+1 = 1. (B.2)

Finally we have

lim sup
‖–‖→∞

‖λ‖d+2νfZ(‖λ‖) ≤ lim sup
‖–‖→∞

A

(
‖λ‖d+2νI +

∑
j≥2

α2
jj!2

2ν+d(1 + (j − 1)2ν+d+1)

)

≤A22ν+d
∑
j≥1

α2
jj!(1 + (j − 1)2ν+d+1) < ∞.

Lemma B. 3.

lim
‖–‖→∞

f
(j)
Y (‖λ‖)
fY (‖λ‖) = j + 1 (j ≥ 0), (B.3)

and if fθ(‖λ‖) satisfies the taper condition,

lim
‖–‖→∞

f
(j)
Y ∗ fθ(‖λ‖)
fY (‖λ‖) = j + 1 (j ≥ 0). (B.4)

Proof. Firstly consider (B.3). We shall show the assertion by mathematical induction. For

j = 0, the result holds clearly. Assume that it holds for j = K. Consider j = K + 1. We

shall show the assertion in the same way as Proposition 1 of Furrer et al. (2006). Note

that f
(K+1)
Y = fY ∗ f

(K)
Y . Then

f
(K+1)
Y (‖λ‖)
fY (‖λ‖) =

∫
Rd fY (‖x‖)f (K)

Y (‖x− λ‖)dx

fY (‖λ‖) .

We divide the numerator into the following five parts

∫

0≤‖x‖<∆′
+

∫

∆′≤‖x‖<ρ/2

+

∫

ρ/2≤‖x‖<ρ−∆

+

∫

ρ−∆≤‖x‖<ρ+∆

+

∫

ρ+∆≤‖x‖
,

where λ = ρv, ‖v‖ = 1, ∆, ∆
′ →∞, ∆/ρ → 0 and ∆

′
/ρ → 0 as ρ →∞. Define ∆ = O(ρδ)

for some (2ν + d)/(2ν + d + 2ε) < δ < 1 as in Proposition 1 of Furrer et al. (2006).

Case1 : 0 ≤ ‖x‖ < ∆
′

Note that ‖λ− x‖ ≥ ρ−∆
′
. Since the result holds for j = K,

f
(K)
Y (‖x− λ‖)

fY (‖λ‖) → K + 1
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as ρ →∞. It follows that

lim
ρ→∞

∫
0≤‖x‖<∆′ fY (‖x‖)f (K)

Y (‖x− λ‖)dx

fY (‖λ‖) = (K + 1) lim
ρ→∞

∫

0≤‖x‖<∆′
fY (‖x‖)dx = K + 1.

Case2 : ∆
′ ≤ ‖x‖ < ρ/2

∫
∆
′≤‖x‖<ρ/2

fY (‖x‖)f (K)
Y (‖x− λ‖)dx

fY (‖λ‖) =
1

fY (ρ)

∫

∆
′≤‖x‖<ρ/2

fY (‖x‖)fY (‖x− λ‖)

× f
(K)
Y (‖x− λ‖)
fY (‖x− λ‖) dx

≤A
′
fY (ρ/2)

fY (ρ)

∫

∆′≤‖x‖<ρ/2

fY (‖x‖)dx → 0

as ρ →∞ where A
′
is a constant being independent of x because ‖x− λ‖ ≥ ρ/2.

Case3 : ρ/2 ≤ ‖x‖ < ρ−∆

∫
ρ/2≤‖x‖<ρ−∆

fY (‖x‖)f (K)
Y (‖x− λ‖)dx

fY (‖λ‖) ≤ fY (ρ/2)

fY (ρ)

∫

∆≤‖x‖
f

(K)
Y (‖x‖)dx → 0

as ρ →∞.

Case4 : ρ−∆ ≤ ‖x‖ < ρ + ∆

∫
ρ−∆≤‖x‖<ρ+∆

fY (‖x‖)f (K)
Y (‖x− λ‖)dx

fY (‖λ‖) ≤ fY (ρ−∆)

fY (ρ)
→ 1

as ρ →∞. Moreover, from (B.2),
∫

ρ−∆≤‖x‖<ρ+∆
fY (‖x‖)f (K)

Y (‖x− λ‖)dx

fY (‖λ‖) ≥ fY (ρ + ∆)

fY (ρ)

∫

0≤‖x‖<∆

f
(K)
Y (‖x‖)dx → 1

as ρ →∞. Thus ∫
ρ−∆≤‖x‖<ρ+∆

fY (‖x‖)f (K)
Y (‖x− λ‖)dx

fY (‖λ‖) → 1

as ρ →∞.

Case5 : ρ + ∆ ≤ ‖x‖

∫

ρ+∆≤‖x‖
fY (‖x‖)f (K)

Y (‖x− λ‖)dx =

∫

Rd

fY (‖x− λ‖)f (K)
Y (‖x‖)1{ρ + ∆ ≤ ‖x− λ‖}dx

≤fY (ρ + ∆)

∫

∂Bd

∫ ∞

0

f
(K)
Y (r)1{∆ ≤ r}rd−1drdU(u).
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Hence

0 ≤
∫

ρ+∆≤‖x‖ fY (‖x‖)f (K)
Y (‖x− λ‖)dx

fY (‖λ‖) ≤ (α2 + ρ2)ν+d/2

(α2 + (ρ + ∆)2)ν+d/2

∫

∂Bd

∫ ∞

0

f
(K)
Y (r)

× 1{∆ ≤ r}rd−1drdU(u).

Note that f
(K)
Y (r)1{∆ ≤ r}rd−1 ≤ f

(K)
Y (r)rd−1 and

∫
∂Bd

∫∞
0

f
(K)
Y (r)rd−1drdU(u) =∫

Rd f
(K)
Y (‖x‖)dx = 1 from (B.2). By the dominated convergence theorem,

∫

∂Bd

∫ ∞

0

f
(K)
Y (r)1{∆ ≤ r}rd−1drdU(u) → 0

as ρ →∞. Therefore,
∫

ρ+∆≤‖x‖ fY (‖x‖)f (K)
Y (‖x− λ‖)dx

fY (‖λ‖) → 0

as ρ →∞. The result (B.3) holds for j = K + 1.

Next we consider (B.4). If j = 0, the result holds from Proposition 1 of Furrer et al.

(2006). Then for any j > 0, the assertion is shown in the same way as (B.3).

Appendix C : Proofs of Theorem 3 and Corollary 1

We first prepare three lemmas.

Lemma C. 1. Suppose that
∑∞

j=1 α2
jj!j < ∞. Then

lim
n→∞

ECY
[Ŷ BLUP (s0)− Y (s0)]

2

ECZ
[Ẑ(s0)− Z(s0)]2

=
1∑

j≥1 α2
jj!j

.

Proof. A stationary random field is mean square continuous if and only if the covariance

function is continuous at the origin (see Stein 1999; page 20). Hence from Yakowitz and

Szidarovszky(1985), ECY
[Ŷ BLUP (s0) − Y (s0)]

2 = 1 − c′Y Σ−1
Y cY ≥ 0 and c′Y Σ−1

Y cY → 1 as

n →∞. Put an = c′Y Σ−1
Y cY (≤ 1). From (2) and (7),

ECY
[Ŷ BLUP (s0)− Y (s0)]

2

ECZ
[Ẑ(s0)− Z(s0)]2

=
1− an∑∞

j=1 α2
jj!−

∑∞
j=1 α2

jj!(an)j
=

1
∑∞

j=1 α2
jj!

(∑j−1
i=0 ai

n

) .

Since α2
jj!

(∑j−1
i=0 ai

n

)
≤ α2

jj!j, by the dominated convergence theorem, the assertion is

obtained.

Lemma C. 2. Suppose that
∑∞

j=1 α2
jj!j

2ν+d+1 < ∞. Then

lim
n→∞

ECZ
[ẐBLUP (s0)− Z(s0)]

2

ECY
[Ŷ BLUP (s0)− Y (s0)]2

=
∑
j≥1

α2
jj!j.
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Proof. As in the proof of Lemma B. 2 for any j ≥ 1,

f
(j−1)
Y (‖λ‖)
fY (‖λ‖) ≤ 22ν+d(1 + (j − 1)2ν+d+1).

Then by the dominated convergence theorem, Lemmas B. 1 and B. 3,

lim
‖–‖→∞

fZ(‖λ‖)
fY (‖λ‖) = lim

‖–‖→∞

∑
j≥1

α2
jj!

f
(j−1)
Y (‖λ‖)
fY (‖λ‖) =

∑
j≥1

α2
jj!j. (C.1)

By applying Theorem 1 with C0 = CY and C1 = CZ , we have as n →∞
1− 2cY

′ΣZ
−1cZ + cZ

′ΣZ
−1ΣY ΣZ

−1cZ

1− c′Y Σ−1
Y cY

→ 1

and

CZ(0)− c′ZΣ−1
Z cZ

1− 2cY
′ΣZ

−1cZ + cZ
′ΣZ

−1ΣY ΣZ
−1cZ

→
∑
j≥1

α2
jj!j.

Therefore as n →∞
ECZ

[ẐBLUP (s0)− Z(s0)]
2

ECY
[Ŷ BLUP (s0)− Y (s0)]2

=
CZ(0)− c′ZΣ−1

Z cZ

1− c′Y Σ−1
Y cY

→
∑
j≥1

α2
jj!j.

Let ftap denote the spectral density function of the tapered covariance function CZ
tap(‖h‖) =

CZ(‖h‖)Cθ(‖h‖). Therefore

ftap(‖λ‖) = fZ ∗ fθ(‖λ‖) =

∫

Rd

fz(‖x‖)fθ(‖x− λ‖)dx.

Lemma C. 3. Suppose that
∑∞

j=1 α2
jj!j

2ν+d+max{1,2ε} < ∞ where ε is given in the taper

condition. If fθ satisfies the taper condition,

lim
‖–‖→∞

ftap(‖λ‖)
fZ(‖λ‖) = 1.

Proof. From Lemma B. 1, we have

ftap(‖λ‖)
fZ(‖λ‖) =

∫
Rd fz(‖x‖)fθ(‖x− λ‖)dx

fZ(‖λ‖)

=

∑
j≥1 α2

jj!
∫
Rd f

(j−1)
Y (‖x‖)fθ(‖x− λ‖)dx

fZ(‖λ‖)

=
fY (‖λ‖)
fZ(‖λ‖)

∑
j≥1

α2
jj!

f
(j−1)
Y ∗ fθ(‖λ‖)

fY (‖λ‖) .
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We shall evaluate the upper bound of f
(j−1)
Y ∗ fθ(‖λ‖)/fY (‖λ‖). If j = 1, it follows from

Proposition 1 of Furrer et al. (2006) that fY ∗ fθ(‖λ‖)/fY (‖λ‖) → 1 as ‖λ‖ → ∞.

Thus fY ∗ fθ(‖λ‖)/fY (‖λ‖) is bounded. For j ≥ 2, putting λ = ρv, ω1 = r1u1, · · · ,
ωj−1 = rj−1uj−1, ωj = rjuj with ‖v‖ = ‖u1‖ = · · · = ‖uj−1‖ = ‖uj‖ = 1, we have

f
(j−1)
Y ∗ fθ(‖λ‖)

fY (‖λ‖) =

∫

∂Bd

· · ·
∫

∂Bd

∫ ∞

0

· · ·
∫ ∞

0

(α2 + ρ2)ν+d/2

(α2 + ‖ρv − r1u1 − · · · − rj−1uj−1 − rjuj‖2)ν+d/2

× A

(α2 + r2
1)

ν+d/2
· · · A

(α2 + r2
j−1)

ν+d/2
fθ(rj)

j∏

l=1

rd−1
l

j∏
m=1

drm

j∏
n=1

dU(un)

=

∫

{r1,··· ,rj ,u1,··· ,uj |‖r1u1+···+rjuj‖≤ρ/2}
·

j∏
m=1

drm

j∏
n=1

dU(un)

+

∫

{r1,··· ,rj ,u1,··· ,uj |‖r1u1+···+rjuj‖>ρ/2}
·

j∏
m=1

drm

j∏
n=1

dU(un)

=J1 + J2 (say).

Then similar to I1 of Lemma B. 2, we have

J1 ≤ 22ν+d. (C.2)

Next we decompose J2 into the two terms.

J2 ≤
j−1∑
i=1

∫

{ri>ρ/(2j)}

(α2 + ρ2)ν+d/2

(α2 + ‖ρv − r1u1 − · · · − rj−1uj−1 − rjuj‖2)ν+d/2

× A

(α2 + r2
1)

ν+d/2
· · · A

(α2 + r2
j−1)

ν+d/2
fθ(rj)

j∏

l=1

rd−1
l

j∏
m=1

drm

j∏
n=1

dU(un)

+

∫

{rj>ρ/(2j)}

(α2 + ρ2)ν+d/2

(α2 + ‖ρv − r1u1 − · · · − rj−1uj−1 − rjuj‖2)ν+d/2

× A

(α2 + r2
1)

ν+d/2
· · · A

(α2 + r2
j−1)

ν+d/2
fθ(rj)

j∏

l=1

rd−1
l

j∏
m=1

drm

j∏
n=1

dU(un)

=J21 + J22 (say).

As in the proof of Lemma B. 2

J21 ≤ (α2 + ρ2)ν+d/2

(
α2 + ρ2

4j2

)ν+d/2
(j − 1) ≤ 22ν+dj2ν+d+1 (C.3)
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and

J22 ≤
∫

{rj>ρ/(2j)}

(α2 + ρ2)ν+d/2

(α2 + ‖ρv − r1u1 − · · · − rj−1uj−1 − rjuj‖2)ν+d/2

× A

(α2 + r2
1)

ν+d/2
· · · A

(α2 + r2
j−1)

ν+d/2

Mθ

(1 + r2
j )

ν+d/2+ε

j∏

l=1

rd−1
l

j∏
m=1

drm

j∏
n=1

dU(un)

≤A12
2ν+d+2εj2ν+d+2ε, (C.4)

where A1 is a constant being independent of ‖λ‖. From the case of j = 1, (C.2) - (C.4),

f
(j−1)
Y ∗ fθ(‖λ‖)

fY (‖λ‖) ≤ A2j
2ν+d+max{1,2ε}

and

∑
j≥1

α2
jj!A2j

2ν+d+max{1,2ε} < ∞,

where A2 is a constant being independent of ‖λ‖. Hence by (C.1), the dominated conver-

gence theorem and (B.4),

lim
‖λ‖→∞

ftap(‖λ‖)
fZ(‖λ‖) =

(
1∑

j≥1 α2
jj!j

) ∑
j≥1

α2
jj!j = 1.

Noting that Lemmas B. 2 and C. 3 are the verifications of the conditions of Theorem 1,

we have the following proposition.

Proposition C.4. Under the conditions of Theorem 3,

ECZ
[ẐtapBLUP (s0)− Z(s0)]

2

ECZ
[ẐBLUP (s0)− Z(s0)]2

→ 1

and

ECZ
tap

[ẐtapBLUP (s0)− Z(s0)]
2

ECZ
[Ẑ(s0)− Z(s0)]2

→ 1

as n →∞.

Proof of Theorem 3
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We decompose the ratio of the MSE into the three terms

ECZ
[ẐtapBLUP (s0)− Z(s0)]

2

ECZ
[Ẑ(s0)− Z(s0)]2

=
ECY

[Ŷ BLUP (s0)− Y (s0)]
2

ECZ
[Ẑ(s0)− Z(s0)]2

ECZ
[ẐBLUP (s0)− Z(s0)]

2

ECY
[Ŷ BLUP (s0)− Y (s0)]2

× ECZ
[ẐtapBLUP (s0)− Z(s0)]

2

ECZ
[ẐBLUP (s0)− Z(s0)]2

.

Then by Lemmas C. 1 and C. 2, the first term and the second term converge to 1/
∑

j≥1 α2
jj!j

and
∑

j≥1 α2
jj!j respectively as n → ∞. From Proposition C.4., the third term converges

to 1 as n →∞. The proof is completed.

2

Proof of Corollary 1

We decompose the ratio of the MSE into the two terms

ECZ
tap

[ẐtapBLUP (s0)− Z(s0)]
2

ECZ
[Ẑ(s0)− Z(s0)]2

=
ECZ

[ẐBLUP (s0)− Z(s0)]
2

ECZ
[Ẑ(s0)− Z(s0)]2

ECZ
tap

[ẐtapBLUP (s0)− Z(s0)]
2

ECZ
[ẐBLUP (s0)− Z(s0)]2

.

Then by the proof of Theorem 3, the first term converges to 1 as n → ∞. Finally by

Proposition C.4., the second term converges to 1 as n →∞. The proof is completed.

2

Appendix D : Property of the sampling scheme in Section 4

Lemma D. 1. Let {Si}i≥1 be i.i.d. sequence in D. Suppose also that P ({ω|‖Si − s0‖ ≤
ε}) > 0 for any ε > 0, P (Si = s0) = 0 and s0 ∈ D. Then

s0 ∈ {Si, i = 1, 2, . . .} a.s.

Proof. Define Aij = {ω|‖Si − s0‖ ≤ 1/j} for i, j ∈ N. By the assumption, P (Aij) > 0.

Then

P

( ∞⋂
i=1

Ac
ij

)
= lim

k→∞
(P (Ac

ij))
k = 0,

because P (Ac
ij) = 1− P (Aij) < 1. Thus，P (

⋃∞
i=1 Aij) = 1. Define Bj =

⋃∞
i=1 Aij. Then

P

( ∞⋂
j=1

Bj

)
= 1− P

( ∞⋃
j=1

Bc
j

)
≥ 1−

∞∑
j=1

P (Bc
j) = 1.

Therefore

P ({ω|s0 ∈ {Si, i = 1, 2, . . .}}) = P

( ∞⋂
j=1

∞⋃
i=1

Aij

)
= 1.
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