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Abstract

This paper proposes a general approximation method for the solutions to second-order parabolic partial
differential equations (PDEs) widely used in finance through an extension of Léandre’s approach(Léandre
(2006,2008)) and the Bismut identiy(e.g. chapter IX-7 of Malliavin (1997)) in Malliavin calculus. We show
two types of its applications, new approximations of derivatives prices and short-time asymptotic expansions
of the heat kernel. In particular, we provide new approximation formulas for plain-vanilla and barrier option
prices under stochastic volatility models. We also derive short-time asymptotic expansions of the heat
kernel under general time-homogenous local volatility and local-stochastic volatility models in finance which
include Heston (Heston (1993)) and (A-)SABR models (Hagan et.al. (2002), Labordere (2008)) as special
cases. Some numerical examples are shown.

Keywords: Barrier Options, Knock-out options, SABR model, A\-)SABR models, Heston model, Short
time asymptotics, Heat kernel expansions, Malliavin calculus, Bismut indentity, Stochastic volatility, Local
volatility, Integration-by-parts, Semigroup, Derivatives pricing

1 Introduction

This paper proposes a new method for the approximation to the solutions of second-order parabolic partial
differential equations (PDEs), which has been widely used for pricing and hedging derivatives in finance
since Black-Scholes (1973) and Merton (1973).

In particular, we derive an approximation formula as Theorem 3.1 based on an asymptotic expansion
of the solutions to the second-order parabolic PDEs by Léandre’s Approach (Léandre (2006,2008)) and an
application of Malliavin calculus effectively: the approximation formula is derived through an extension of
Léandre’s “elementary integration by parts formula” (Theorem 2.2 in Léandre (2006)) presented in Propo-
sition 3.1, and an application of the Bismut identity (e.g. chapter IX-7 of Malliavin (1997)). Also, this
derivation can be regarded as an extension of the PDE weight method in Malliaivn-Thalmaier (2006) to an
asymptotic expansion of the solutions of the PDEs.

Moreover, our method has an advantage in a sense that our computational scheme can be applied to
various diffusion models in a unified way to obtaining derivatives’ prices and Greeks under various (multi-
dimensional) diffusion models. Especially, it is stressed that as an application we derive a new approximation
formula for pricing barrier options under a stochastic volatility model, a SABR model, where our formula is
obtained by an expansion of the well-known barrier option formula under Black-Scholes model. Note that
because SABR model has no mean-reverting component in the volatility process, the fast mean-reverting
asymptotic analysis by Fouque et al.(2000a,b) and Ilhan et al.(2004) seems not applicable to this model.

In addition, we apply this method to deriving a short-time asymptotic expansion of the heat kernel under
the general diffusion setting which includes general time-homogenous local volatility, Heston and (A-)SABR
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training center for new development in mathematics.” All the contents expressed in this research are solely those of the authors
and do not represent the view of any institutions.
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models as special cases; for the local volatility model, we also show how to compute the coefficients in the
expansion by using the Lie bracket. Furthermore, we note that the similar method can be applied to a
certain class of non-linear parabolic partial differential equations though this paper explicitly deals with the
linear PDEs. (Please see Remark 3.1.)

There are many approaches for approximations of heat kernels through certain asymptotic expansions:
for instance, there are recent works such as Baudoin (2009),Gatheral-Hsu-Laurence-Ouyang-Wang (2009),
Ben Arous-Laurence (2009), Takahashi-Takehara-Toda (2009) and Takahashi-Yamada (2009). On approx-
imation of the solutions to second-order parabolic equations and its applications to option pricing, Cheng
et al.(2010,2011) have been developing a new method called Dyson-Taylor Commutator method. Further-
more, Fujii-Takahashi (2011) has developed a new approximation method for the solutions to the nonlinear
PDEs associated with the four step scheme for solving forward backward stochastic differential equations
(FBSDEs).

The organization of the paper is as follows: After the next section introduces Léandre’s Approach,
Section 3 derives an integration by parts formula as an extension of a Léandre’s theorem and then provides
an approximation to the solution of second-order linear parabolic PDEs. Section 4 applies the method
developed in the previous section to finance including the valuations of plain-vanilla and barrier options
under stochastic volatility environment as well as options’ vega. In particular, we provide a new approximate
formula and a simple numerical example for down-and-out barrier option prices under a SABR model.

Section 5 derives a short-time asymptotic expansion using integration by parts formula. Section 6 shows
examples of the short-time asymptotic expansion under general time-homogeneous local volatility, stochastic
volatility model with log-normal local volatility and general local-stochastic volatility models. We also
provides numerical examples of the short-time asymptotic expansion under Heston model. Finally, Appendix
summarizes the calculation of the second order approximation in Section 6.1.

2 Malliavin Calculus in Semi-group Theory
This section summarizes a part of Léandre (2006,2008) which reveals the connections between the semigroup
theory and Malliavin calculus. In particular, we introduce Theorem 2.2 below that provides a nice idea for an

approximation of the solutions to parabolic PDEs and will be extended in the next section for our purpose.

Consider the following diffusion process on R™ over the d-dimensional Wiener space (W, H, u).

d
dXy = Z Vie(Xe) 0 dWE + Vo(X)dt, (2.1)
k=1
Xo = x0€ Rn7

where Vi = (Vi},---, Vi) with Vi € Cg°. Let AY(2) = 22:1 Vi(z)V{ (z) and we assume that a n x n
matrix A(x) :A[A"j (x)] is invertible at any point.
We define Vj, as

Vk:ZV;(;p)£, k=0,1,--,d. (2.2)
i=1 ¢
and
1 d
L= 2+ Vo. (2.3)
k=1

Associated to the operator £, we consider the following PDE:
(éfﬁ)u(t Z) = 0 (2.4)
8t ) - ) .
u(0,z) = f(x),
where f € CZ(R™). Then, the unique solution u(t, z) has the following form:
u(t, ) = Pef(x) = E[f(X7)], (2.5)

where the family of (P;):>0 is a Markov semigroup, i.e. Pyy+s = P¢P,. L is the generator of P;.



Let Z be the following 1-dimensional process:

d n
iz, = 7 <ZZh};(t)th’“> , (2.6)

k=1 i=1

Zy = 1.

where h}, € L*([0,T]). Note that Z; is given by

zt—exp{Z/ aw’ —{j/m ds} (2.7

where hy, = " | hj,. Define

ﬁkzhkﬁ, k=1,---,d. (2.8)
0z
Let
Vk:Vk+Zilk,k:1,”-,d. (29)

Then, let £" be a generator

M\H

d
Z (2.10)

It generates a time-inhomogenous Markov semigroup (15?,1){,52 s>0}-
Next, for ¢t € [0,T] (T € (0,00)) we consider the following diffusion process:

d d
dXT = Y Vi(Xa) o dWE + Y hi(Vi(X)dt + Vo(X1)dt, (2.11)
k=1 k=1
)((})Z = xz0€R".

The associated generator is given by
d
"=+ Vi (2.12)

It generates a time-inhomogenous Markov semi-group (Pg,t) (t530)"

We write Pg,t and 1337,& as PP and f’f, respectively.
Theorem 2.1 Consider a R-valued function f(x,y) = fg(z,y) = f(x)g(y) on R"*! where f € CZ(R")
and g(y) =y fory € R. Then, the following formula holds.

P! f(x) = PY[fl(z,1) = PY[fg)(x,1). (2.13)
Proof 2.1
Plfl(z,2) = E|f(X])zexp t s)dW?r — = |hi (8) | ds
{3 [ oo 33 [ mora|
= FE|f(X])exp hi(s)dWE — = | (8) | ds
{3 [ 33 [y
= P![fl(z,1)z (2.14)
Note that
(shivi 2Pl )| = (i { g2 P0G
= WV B, 1), (2.15)



Then,

L'PY(f)(w,2)|,_, = L"PY[f](=,1). (2.16)
We also have
(% ~ ) B, 2o = 0. (2.17)
Therefore, u(t, z) = PP[f](z,1) satisfies
(% — Eh> u(t,z) = (% — Eh) u(t,xz) = 0. (2.18)
On the other hand, F(t,z) = P} f(x) satisfies
0
(& - ﬂ”) F(t,z) =0. (2.19)

Then, the result follows from the uniqueness of the solution.

Remark

Pife) = [ SOt ) = [zt = PET ), (2.20)
w w
where p" is the shifted Wiener measure in the direction of h € H, i.e., u"(w) = p(w + h).

We consider the following perturbed diffusion process, for ¢ € [0, T:

d d
dX{? = Y Vi(X[)odW + > ehi(t)Vi(X{7)dt + Vo(X{)dt, (2.21)
k=1 k=1
X = zeR",

where € € [0, 1].
The associated generator is given by

d

£ :E—I—ethVk, (2.22)

k=1
e € [0,1].
Let f € CZ2(R™). u(t,z) := Pif(z) = E[f(XZD’(e))]7 t € [0,T], z € R" is the unique solution to the
following PDE:
(% —£)ute) = 0, teOT] (2.23)
u(0,z) = f(x).
Note also that u®(t,z) = P{ f(z) = Py f(z) = E[f(XF)], t € [0,T], = € R™ is the unique solution of the
following PDE:
(% - .co) u(t,z) = 0, te(0,T] (2.24)
W(0,2) = f(a).
Theorem 2.2 below will present a formula for

ui(t, ) := P f(z) = %

P f(z). (2.25)

e=0

First, it is easily seen that ui (¢, x) is the unique solution to the PDE:

d
7] .
&m(t, x) — Lo (t,x) — k%l h Vil (t,z) = 0, (2.26)

ui1(0,z) = 0.



Consider the following 1-dimensional process:

d n
>3 hiwawy, (2.27)

dQ: =
k=1 i=1
Qo = 0.
Define hy, = Z?:1 ¢ and
hi(t) hﬁ k=0,1,---,d (2.28)
k - kaq7 — U L s G .
Then, define V;, as
Vi = Vi + hi(t), (2.29)
where
hi(t) hﬁ k=0,1,---,d (2.30)
k - kaqa — YL [ et} .
and the generator £" as
1 d
Lh = 3 V2 + Vo. (2.31)
k

Then, it generate a time inhomogenous semigroup (PQ )

. Ph Bh
t) (13530} We write Pg; as Py

Theorem 2.2 Elementary integration by parts formula -Léandre (2006,2008)-
Consider a R-valued function f(z,y) = fg(z,y) = f(z)g(y) on R"* where f € CZ(R™) and g(y) =y for
y € R. Then, the following formula holds.

ur(t,2) = PLLf)(, 0) = PLfg](,0) / PSS b Vi o P ) (2:32)
k=1 i=1
Proof 2.2 Consider the following PDE:

F(0,2,q) = f(z,q).
Then, the unique solution is given by

f(t.z.q) = P}[fl(z,q) = ZZE{ X““( / hz(s)dws’“ﬂ. (2.33)

k=1 i=1

Also, we have the relation:

P! (f](z,q)

= ZZE[ F(x7) (q+/thz(s>dwf>}
k=1 i=1 0
d n t

= Y e[ [ k] e o]

= P![fl(.0) + Pif](@)a (2:34)

Thus, we have
O Bl1f\@, ) = £'PEf(,0) = £ {PE)(2,0) + Pulfl@)a} (2.35)



Note that the function x — P f](x,0) does not depend on q, then

h;;vkaaa P} f(z,0) =0,
and
nvi 0 Pif@a = hvi 2Py f(a),
ozt ol
then
9 bl fa, ):£°P?f(m,0>+zdjhkvkptf(w>,
ot s

with starting condition 0. Therefore, 13?[];](2:, 0) satisfies (2.26) with starting condition 0.

On the other hand, it is easily seen that

+ d
% (/0 P?SthVkng(:n)ds>
= £ (/ thVkPé’f >+thVkP?f()
0

Then, (f(f P)_, Ezzl thkng(x)ds) satisfies (2.26) with starting condition 0.
The result follows from the uniqueness of the solution of (2.26).

(2.36)

(2.37)

(2.38)

(2.39)

Remark 2.1 (2.32) corresponds to Theorem 2.2 of Léandre(2006) and Theorem 5 of Léandre(2008).

Remark 2.2 Alternatively, we can derive the formula ui(t,x) = laf[ﬂ(m, 0) in Theorem 2.2 in the following

manner. Consider the following n X n matriz-valued process, for 1 <i,j < mn,

dUi(t) = Z ZA Yo dW! + ZBk YUE(s)ds, (2.40)
=1 k=1 =
Uj(0) = 4,
where
Auls) = aVI(XD), (2.41)
Bi(s) = aVo(XJ), 2.42)
and 5;- is the Kronecker’s delta. Let Dsy, k =1,---,d be the Malliavin derivative acting on the Brownian
motion WE. Then, it is well-known that for s <,
sk X = Z Ui (t )5V (x (). (2.43)
l,j=1
Hence, we obtain that for f € C¢,
9]

U1(t, 3;‘) = %|e:OP§hf(m) = |€:OE[f(th7(€))]

- ;E[aﬂxt);’ee_ox;?}
= ZE [8if(Xt Z ZUZ / ( ) hZ(s)ij(Xs(O))ds‘|

l,7j=1 k=1

_ Z Z E [/ i f (XD X hi(s)ds]

k=1 i=1

de



ZZEU skfX@)hl()d}

k=1 i=1

Z Z E {f(xt“”) / m;(s)dwf} = P [f)(x,0). (2.44)

k=1 i=1
Moreover, under the ellipticity of £, the law of Xt(0>, has the form pX(O) (t, z, y)dy where dy is the Lebesgue
measure and hence, we easily obtain the following.
Corollary 2.1
_ .~ _ (0)
P'[fl(z,0) = P"fol(x,00= [ [ W™ (t,z,y)dy, (2.45)
Rn

where

ZZ/ hi(s)dWk| x (0 = ] (2.46)

k=1 i=1

3 Integration by Parts Formula and Asymptotic Expansion
of the Solution to Parabolic PDEs

In this section, we will extend Léandre’s “elementary integration by parts formula” (Theorem 2.2 in the
previous section) to Proposition 3.1 below, and present an approximation formula((3.47) in Theorem 3.1) of
the solution to a second-order linear parabolic partial differential equation.

Let X () be the unique solution to the following n-dimensional perturbed SDE: for € € [0,1],

d
dX{? = Y Vile, X[V) 0 dWf + Vo(e, X{7)dt, (3.1)
k=1
Xo = zeR",
or
d
dx{? = > Vile, X[F)dWS + Vo(e, X{V)at, (3.2)
k=1
Xo = zeR",

where Vi, = (Vit, -+, V{")(k = 0,1, -- -, d) have bounded derivatives of any orders in the variables (¢, z) and

n d

Vi, 2) = Vil(e,2) + 2 ZZM e, ) Vi (e, ). (3.3)

Here, “o” indicates the stochastic differential in the Stratonovich sense.

Also, consider the following n x n matrix-valued process, {U( 9 (U< o)t '(),1 <i,j <mn,0<t},

AUty = ZZA(W YU (s) 0 dWE + Y B (s)U " (s)ds, (3.4)

I=1 k=1 k=1
Uity = 4,
where
OV (e, XV,
= V(e X') (3.5)

ALY (s)
B,(;)’i(s)

and 5;- is the Kronecker’s delta, that is UOE) = I(the identity matrix). Specifically, for Ut(o),
AL s) = [aVi(e, X1)]

B (s) = [aVi(e, x19))]

’6:07

e=0"



Let

€ a €
X9 = &Xf ), (3.7)
Then, we have
xt9 =yl >/ (U™ <Za Vi(e, X9 0 dWE + 0. Vi (e, X9)ds ) , (3.8)
0 k=1
where 0. means %. In particular,
0 (e
xM o= x19 = &Xt“ . (3.9)
t L d
= u® / (U™ (Z [0:Vi(e, XIN]| _, 0 dWE + [0Vo(e, XIN)]| _, ds) . (3.10)
0 k=1
Next, let a(s)i, 1 <i<n, 1<k <d, be the process;
a()k = (U(s) ™ Vile, X)) (3.11)

Then, the reduced Malliavin covariance V.9 (t) = {(VE(t))¥}, ; is expressed as

)i = Z/ 5)] ds. (3.12)

Throughout this section, we assume the following non-degeneracy of the reduced Malliavin covariance:

[A1] sup E[(det(Vi9(t)))?] < oo for 1 < p < oo. (3.13)
e€(0,1]

Then, by Theorem 9.2 in Tkeda-Watanabe (1989), we obtain a smooth density, y — p°(¢, x, y) associated with
(3.1)((3.2)). Moreover, according to Remark 2.2 and Remark 2.3 in Watanabe (1987) as well as Proposition
2.2 in Tkeda-Watanabe (1989), we can see p°(t,x,y) is smooth in z and € as well.

We next define V,f as

V;f:ZVki(e,m)%, k=0,1,--,d. (3.14)
and
1o -
=3 ; 2+ V5. (3.15)
Next, for f € Cy,(R"), let
W)= Pif(e) =B [1(5)] = [ 1o (3.10

Then, u(¢,x) is the solution to the following PDE:

(% - £E> w9t z) = 0, (3.17)

u0,2) = f(a).
Also, let
0 .— po — 0)y| — 0
u(t,2) == PYf@) =B [FX7)| = [ 5’ )dy, (3.18)
Rn
where p°(t,,y) is the smooth density for (3.1) with ¢ = 0. Then, u°(t,x) is the solution to the following
PDE:

(% - LO) L(tz) = 0, (3.19)

uo(O,x)

I
[
—~

8
-



3.1 Integration by Parts Formula

In this subsection, we will give the formula for u' (¢, z) =
following PDE:

Zu(t, :):)|E:O, and show that u'(t, ) satisfies the

(% — LO) u'(t,z) = L4 x), (3.20)
u'(0,z) = 0,
where
B 1= 0 0
1 Y e _ - il ? 21
L 8€£ —o 2 Z e [Vk (67x)vk (67 '7;)] o 61‘1(91'] (3 )
,7=1 k=1
—~ 9. 8
+ — &VO (67 m) —o 6377, ‘
We obtain the following proposition.
Proposition 3.1 Let ¢°(t) be the process given by
1
= (vf(t)‘lUU(t)‘IXt“)) ,1<1<n. (3.22)
Then, the following formula holds:
t
u'(t,z) = / PY_.L'[Pf](x)ds (3.23)
0
t
= B|fx) ZZ{ / (s)hdWE — / Ds,kdj(t)‘a“(s)Lds}] (3.24)
I=1 k=1 0
= F@wy)p’ (t, 2, y)dy, (3.25)
RTL

where y — w(y) is a smooth function given by

ZZ{ / a®(s)kdW — / Ds,kg‘)(t)la“(s)zds} X7 = y] : (3.26)

=1 k=1

Proof 3.1 Let {fn}n C Ci°(R™) be a sequence such that fn — f asn — oco. For E[fn(X\V)], we can
differentiate with respect to € (and set € =0) as follows;

o c
el OE[fn(Xf D)
0 (e
= ZE[ X(O ) 86Xi(t) e:o}
= E [an(Xt(m) -Xt“)} (3.27)

= B[R vV ovim o x|
- ZZZE[; XU @RI (o) o X D)
i=1 m=1 I=1
d t l
égnmﬁwm;@:/w;mmwwmamw@w%>wa>Wﬁnﬂ]

= > D> >F
e 1) / (ZU (U VX)) )(U“'_IWXS(O))WS ((v£<t>>‘1U:1X§”)l]

N,

i=1 m=1 =1

n n d
DI

i=1 =1 k=1

B ZZZE[SZ Fu(X) / (UU V(X)) (U V(X)) ds ((v:’(t))—lUflxé”)l}

=1 l=1 k=1




ZZE /Za xhw )Us_lvk(XéO)))i<(‘4°(t)>‘1U{1X§”)l(U;lvk(xéw))ldj

ZZEU[DSW XN (@) a ()d]. (3.28)

=1 k=1

In the above equality, U = U°, and we used the following relation.

Derfa(X”) = Za XU BOUT V(X)) (3.29)

Forg=(g',---,g"), ¢ = fa(X{)¢O(t)!, we have

ZZE[ / ] ZEU Dy g'a’( )kd3:|, (3.30)
=1 k=1 =1 k=1
and
Dirg' = Do e[ fa(X V) (6)'] = [Dae fu (XN (@) + fu(X ) De (). (3.31)
Then,
DI U Daifa(XNC ] > [fn (x{) {c @ [ - [ Ds,kc(’(t)la(’(s)ids}}
1=1 k=1 =1 k=1 0 0

(3.32)

Therefore, we obtain the following formula.

n d t t
| By = ;;E[fmf%{c%)l / o’ (s)kd W — / Ds,kc%t)laf’(s)zds}]
= Fa(y)w(y)p° (t, =, y)dy, (3.33)
RTL
where
n d t t
=1 k=1 0
The following estimates hold:
|Ef (X)) = Efa (XN < Nf = Falloos (3.35)
0 .
| 5| _ B = By | < 1 = Fulloclimlon, (3.36)

where
n d t t
= { / o (s)aW? — / Ds,kCO(tﬂaO(s)Lds} . (3.37)
I=1 k=1 0
Therefore, we obtain as n — oo,

0

u'(t,z) = Jel._ OE[f(X(e))}
- ZZE[ ) { ® / o’ (s)pdWs - / Ds,kc°(t>la°(s)kdsﬂ
=1 k=1 0 0
= / fy ’(t, x,y)dy. (3.38)

10



Alternatively, let (s = PY_ P f(x). Then, we have

Pif(z) ~ P)f(z) = G — o = / 9 ¢uds = / P [L° — LOPS f(x)ds. (3.39)
0 0

Hence, using (3.21), we obain

1 0 € 0
u (t,x) = &u (t,z) ., = 161%1 [Ptf( )— Ptf(:c)]
t
0 0 €
= 12?82/0 Py, [L°— L°] PSf(x)ds
t
= / PY_.L'PYf(x)ds. (3.40)
0
Also, we easily see that
0 "0 Ao Y 10
S Prc'Pir@yas ) = £ | PYLL'P(@)ds + £'PLS (@), (3.41)
0 0
and hence, F f PY_.L'POf(x)ds satisfies (3.20) with starting condition 0.

3.2 Asymptotic Expansion

Let H(l)(Xt(e)’m, ) : Do — Do be the divergence operator (Malliavin weight) defined by the Bismut identity
(pp.247-248 in Malliavin (1997)):

n d t t
H(1)(Xt(5)’g”7 W) = Z Z |: / (s)pdW?E — / D, xCE(t)'a(s)ids| , (3.42)
= 0

where U is a smooth functional in the Malliavin sense, ¥y € Do (R"™), and
¢ = (Ve Ut ) (3.43)
The iterated Malliavin weight H}, is recursively defined as follows:
Hi(X(" W) = Hy (X, Hyor (X7, W0,)), (3.44)

with
Ho(X )" w,) = v,.
The next theorem is our main result in this section.

Theorem 3.1 Consider the following PDE with its initial condition f € Cp(R™):

(% —L)uba) = o (3.45)
u(0,2) = f(z).
Then, its solution
W) =Pif@) =B [1X)] = [ e (3.40
has an asymptotic expansion in R:
N
Pif(z) = {P?f(m) +> ejaj(w)} +O0(N ), (3.47)
j=1



where

a;(z)

Z > / / / Py, LPPY L% PY L LORPY f(x)dty - - diadt

k=1 B1+-+Br=73,8;>1

(3.48)
(4)
= F(xO) ZH (xO= HX° By (3.49)
= / F@)w; ()’ (t,z, y)dy, (3.50)
R’!‘L
with £ = 545 %)._o, k € N, and
CIN .
> = > W
k k=1 pB1++Br=7,8:;>1

Here, the so called Malliavin weight Hk(Xt(O)’z, Hf ) ngjl) is defined by (8.42) and the push-down of the
Malliavin weight w; € S is given by

()
ZHk (X HXSZ‘?)IX‘” y] : (3.51)
1=1
where Xi(to)”C = kl| A X( )|E 0, k€N, i=1,---,n. Moreover, we obtain a heat kernel expansion in R.:
N
pitey) = PLey)+ Y EGtey) +0E) (3.52)
j=1
= p’(t,z,y) <1+ZE w;(y ) O(eN ™), (3.53)
where

G (t, €z, y) = wj (y)po(t7 €T, y)

Proof 3.2 We can recursively apply the integration by parts in Proposition 3.1

w(t,z) = %%P;f(xﬂe:o (3.54)
= Fy)w; (y)p° (t, 2, y)dy, (3.55)
R"L

where

(7)
w; (y lZ Hy (X" HX° X = y] : (3.56)

Then, we have
N
Pif(z) = P{f(@)+ Y € (t,2) + " Ru(e). (3.57)
j=1

where the remainder terms R (€),

1 (N+1)
Ry(e) = / L N) l Flxiey Z Hyo (X HX“’” ) ] u, (3.58)
0
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which satsfies
B[R (e)]] < C(T)|| flloo El(det(VV (1)) 7] < o0,

for some C(T),~,B. (See P.102 in Nualart (2006) for instance.) A
Alternatively, we can recursively obtain the following expression of v’ (t, z) in the similar way for obtaining
(8.40) in the proof of Proposition 3.1:

‘ J t t1 tr—1
W) =Y > / / / P, LOPY L% PY LY f(a)dty - diadty.
0 0 0

k=1 B1+4-+Br=5,8:>1

Also, it is easily seen that u’(t,x) satisfies the following PDE:

(% L) () = £ (1) o L0 2), (3.59)

Moreover, if we take a sequence {fn}nen such that fn €S, fn — §y as n — 0o, we have
P;fn(m) =S <f7l7p€(t7 x, )>S el <6y7p€(t7x7 )>S = pe(t7x7 y)7 n — o0. (360)
Then, the following heat kernel expansion holds :

N
p(te,y) =Pt y) + Y Gt a,y) + 0, (3.61)

j=1
where

Gtz y) = w;i(y)p’(t 2, y).
Therefore, we obtain the results.

Remark 3.1 Let us consider the solution of the PDE:

{ (% + £(E)) w9 (t,z) =0,
W9 (T, 2) = f(2).

Suppose u(é)(t,m) is expanded by a perturbation method as
w9 (t,z) = u'(t, @) + et (t, @) + EuP(t,z) + - - (3.62)

In order to obtain ui(t, z), i =0,1,2 for instance, we formally expand the PDE:

(% + L+ eLt + L7+ - ) (u’(t,2) + eu' (t,2) + €0’ (t, ) + ) =0, (3.63)
where L' = % a;f: le=0-
Then, u'(t,x), i = 0,1,2 satisfy the following PDEs:
(5 + L2 (t,2) = 0,
3.64
{u@nm—fux (3.64)
(% + co)ul(tv CL‘) = 7‘£’1u0(t7m)7
{ u?(T, ) =0, (3.65)

(2 + Lo (t,z) = —(L'u'(t, z) + L7 (¢, 2)),
{ ug(T, x) =0. (3.66)

Theorem 3.1 provides a solution to this problem. We note that the same method can be applied, at
least formally to a certain class of non-linear parabolic partial differential equations although Theorem 3.1
explicitly deals with the linear ones. A simple example is as follows:

(0 + LY (t,2) =0, (t<T); u(T,x) = f(x) (3.67)
Lf= %a(uiazuﬁfam, (3.68)
o(u,0;u) =1+ e(u® + dpuc), (3.69)
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In this case, we have

L’ = %am, (3.70)
b= (W (t,2) + 0,u’(t, 7)) Ora, (3.71)
2_ % (Wt 3) + 0 (1, 7)) + 2(u* + 0o’} Do (3.72)
Hence,
(0 + 500a)u’(1,2) = 0; W (T,) = f(2), (3.73)
(0 + %C?m)ul(t, z) = —(u’(t,z) + 0pu’ (t, 2)) e’ (t, x); u' (T, z) =0, (3.74)
@ + %am)qf(t, z) = (L' (t,z) + L20°(t, 2)); w*(T,x) = 0. (3.75)

u®(t,x) is easily solved by (3.73):

—(z—a)?

e 2T-9 f(z)dz.

u’(t,z) = /OO __r
’ I \2m(T —t)

Then, given u’(t,x), the right hand side of (3.74) is easily computed and so u'(t,x) is solved, too:

ul(t,x) — E(t,x) |:/T 9(57Ws)d5:|

T oo 1 —(z—a)?
= ——————¢ 269 g(s,2z)dz | ds,
/t /,oo \2m(s —1t) (%)

where
g(s,2) = (u(s,2) + 0u’(s, 2))0uzt’ (s, 2).

Recursively, given u®(t,x) and u'(t,z), u?(t,x) is obtained by (3.75).

Moreover, please see Fujii- Takahashi(2011) which has developed a mew general approzimation method
for the solutions to the nonlinear PDEs associated with the four step scheme for solving forward backward
stochastic differential equations (FBSDEs).

4 Perturbations around Closed Form Solutions : Application
to Vanilla and Barrier Options

In this section, we derive approximation formulas for derivatives in stochastic volatility models using the
expansion methods developed in Section 3. Hereafter, we use the notation fT(a:)p(m)d:c for T € S'(R")
and p € S(R") meaning that s/(gn) (T, p)s®mn)-

4.1 Vega Weight

Fournié et al. (1999) derive the greeks weights using Malliavin calculus. In this subsection, we obtain the
Malliavin weight for the plain-vanilla option’s vega(vega weight) by the Bismut identity and show how to
derive the analytic approximation of option price using the Vega weight. Let us consider the following asset
dynamics.

dSt = O'(t, St)th (41)

SO - S0,
where o(t,z) > 0. We also consider the perturbed diffusion with o(¢,z) = o (¢, z) + €,

ds; = o°(t, S5)dWs. (4.3)
So = So0. (4.4)
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The plain-vanilla (call) option’s vega is defined as follows.
0 0 . e
vega™" = 75 El(ST — K)']= 2 ElST — K)¥)le=o = E[0(ST — K) " SF|e=o].

Note that under non-degeneracy of Si, (S: — K)+ € D_. is a Watanabe distribution.

In this case, the option price under S5 is approximated as follows;

CE(T —t, so, K) = E(t,so)[(s’;f) - K)Jr} ~ / (S - K)erS(O) (T —t, so, S)dS +e- vegaLV7

R

where ps(o) (T —t, s0,s) is the density of S(®.
In the case of o¢(t,x) = (0 + €)z,

ds; = (o4 €)SidWs.
S5 = S0 =so.
The logarithmic process of S§ is given by,
dX;{ = (o4 €)dW; — %(a + €)?dt.
X¢ = XJ =z =logso.

The associated partial differential equation is given by

0 + LYW (t,z) = 0,
WNTx) = f(e),

where L€ is the generator of Xt(ﬁ), i.e.

1 2 O 0

and f € Cp°.
The Vega is calculated in the following way. Let us consider the process,
dUt = O'Utth,
Uy 1

and introduce the process a(t),

Let C(T) be the reduced Malliavin covariance,

o) = /t ' a(s)?ds

= /t (;—2055>2 ds
= (s00)*(T —t).

Next, we differentiate the underlying asset price at time 7' with respect to € at € = O:

9 e
Esﬂe:o = Sr(Wr_i—o(T —1t)).

Also, we define the process £(t) and ((t) as

&) = Un' L Stlemo
= éST(WT—t —o(T —1))
= so(Wr—t —oT),
1 1
(T) = C(T) &T) = m(WTﬂs —o(T —1t)).

15
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Then, the Malliavin derivative of {(t) is given by

D.(T) = 1 Lacr.

s002(T —t

By the integration by parts derived in section 3.2, the Vega is calculated as follows.

9 e
et (57 = ) Tleg

-K)t T)/ 5)dWs — /tT DsC(T)a(s)ds}]

- {c
= L) _(ST - K)* {SOO_Q(M(WTt —o(T - t))/t soocdWs — /t SOO_Q(IMSOUdS}:|
( )" { )

= Et,s0)

1 1
= FE KV ——— Wi, —Wp_,— =
(t,50) | St (T —1 Wiy — Wr—¢ a}]
1,2 2
: 1 ) 1 - 1 _(271750 (T—t))
= & —K)TE | ————Wi_, — Wyt — =|X5" = z:| —c 202(T—t) dz
/R( [U(T—t) e o7 2102(T — t)
1 7(sz7%02(T7t))2
= / (€® — K)"9(2) ————c 203(T—8) (g,
R 2wo2(T —t)
where
Iz) = E L owz,w —1|Xt”“—z
T o(T —t) -t T=t = Gler =
1 1 5 21 1, ) 1
= —(z- —o" (T — ——|z- - (T—-1)) ——.
o3(T —1t) (Z x+20( t)) U(z x+20( ) o

Equivalently, we can calculate the Vega by differentiating the semi-group. Recall that £ is the generator

of X9,
1 2 0% 0

We define the differential operators £°, £ as follows;
1 ,(0* 0
ot =— - — |,
2 or? O
10 L 0? 0
L= gFl==\gm o)
by

Using semi-group theory, the Vega is given

£ =

0 .
& (b, 2)|e=o (4.16)

/TPS LPT f(e)ds

/ [ [t =t (= ) o = s gy (1.17)
/t (W— )// (s — t.2, Ip(T — 5,y )y (¢")dzds (1.18)
({5 oo

= —t)L / fle —t,z,z)dz. (4.20)
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Note that

0

8xp(T7t7maz)
o 1o} 1 1 1 5 2
= & 27r(T—t)aexp{ 557 (z T+ 50 (T t))}

1 1 1 o \\2 ¥z—x 102 B
= 27r(Tt)Uexp{_202(Tt)(z_x+2g (T t))}JQ(Tt)( +50° (T 1),

and
2
@p(T—t,x,z)
o? 1 1 1, 2
= WMeXp{_sz)(z_x+2a (r-1) }

1 1 1, 2 1 1, ? 1
= 727r(T7t)a eXp{_202(T—t) (z—x—i—ia (T—t)) }{<02(T_t)(z—ac+2a (T—t))> _702(T—t)
Then, we obtain
&ue(t,x)k:o
U(T_o/ (T —t,,2) (z—%ﬁaz(T—t)))Q_l_ (z-wot30*(T-0) |
R B g

o2(T —t) 2 o2(T —t)

1

/Rf(ez)p(T_tvva) {03(7}_15) (m—x0+ %UQ(T—t))Q . % (:p—ﬂﬂo + ;UQ(T—t))}dz.

We obtain the Malliavin weight for the Vega,

ﬁ(z):ﬁ(z—x+%a2(T—t))2—l_§(z—x—i—%aQ(T—t)).

g

4.2 Pricing Options under Stochastic Volatility Model

This subsection derives an approximate solution of the partial differential equation (PDE) in stochastic
volatility model by a perturbation method. We consider the following stochastic volatility model (St, o¢):

S\ = o9 SV AW 4,
dage) = egge)(deLt + /1 — p2dWay),

where € € [0,1]. The purpose of this subsection is to evaluate the European option price which is defined as
CV(T — t,50, K) == E(1,50) (S — K)T]. (4.21)

Let (Xt(6>) denotes the logarithmic process of the underlying asset (S,ge)). We also define

P f(z) = B[f(X7)],  feCy,
and a generator
1 50 1 5,0 2 1 5 0°
(e) - 2Y _ = 2 Y 2 22 2 Y
£ = 2 0z 2 0 tep ox0 te 27 902 (4.22)
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where

0~ 1200 1,0
= 279 9227 27 B
62
T 2
L= po dzdo’
2 _ 1020
Lo = 59 ek

Note that Lo is the (logarithmic) Black-Scholes operator. For f € C¢°, the solution u'® (¢, z) = P(TE)_zf(e”)

of the PDE,

{ (et o
u (T, z) = f(e”).

Let (U:) be the first variation process defined by Uy := 820 St(()), i.e.

dUt UtO't(O)dWLt,
Uu = 1,

and C(T) be the reduced Malliavin (co)variance of S\ at e = 0, i.e.,

C(T) = /tT a(s)ds,

where
at) = V) 'o”s”.
We introduce the expressions;
* (e
Skr = ﬁséﬂ)k:m

k
BTy = (Up)”! H Sg;r,
i=1
Cﬂl’m’ﬁk(T) = C(T)ilgglymyﬁk(T)v

where §; > 1 satisfy

k
> Bi=j jeN, 1<k<j

=1

Theorem 4.1 For f € C,°, we have an asymptotic expansion of the solution to PDE,

PL), f(e")

N J T T T
0 j 0 B . 0 0
= P e+ ey / / / PO % PO LR (e,
j=1 t t1 th

N
j (0)
= PR+ D¢ [yt T T~ )y + O
R

j=1

where

J

>

1 0)) +(0),t,x
w;(t, T, zy) = ﬁE[ﬂEj))lX(T” :y},

> :

51+"‘+5k7~ =j,8i=1lor2,k;>1

18
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J
I = D D ),

k=1 pB1++Br=4,8;>1
T T
O1(CP PR (T)) = Cﬂl’”"ﬂ’“(T)/ a(s)dwl,s—/ [Ds 1P P% (T a(s)ds,
t t

Ie(CPTI(TY) = 910 9 (CPVN(T)),

and PO is the Black-Scholes semigroup with the generator £°.
Proof 4.1 Under the ellipticity of LS and oo = a[()o) > 0, the solution associated with the stochastic volatility

model, P(T J(€7) has an asymptotic expansion around € = 0 and the expansion coefficients are obtained by

the following way. The limiting (€°-order) term, Pg&t is the (logarithmic) Black-Scholes semi-group with the
generator L£°. The coefficients of the asymptotic expansion of the solution to PDE are calculated as follows;

T
P f(e") =PY f(e") +e / PO L'PY, f(e")dty + - (4.23)

Z// / sz)_tﬁﬁ’“z‘- LPPY LOPR f(e")dty, - - dtadts
+ O (4.24)

For the coefficient of ej, note that

9 J T T T ) : (
0 ) 0 o ;
aZ/t /t /t ng) LR [:B2P£1 t2£61PT)t1f(e )dty; - - - dbadty
1 k’j—l

= L% (t,z) — L2772 (t,2) — LY (¢, ). (4.25)

Then, the coefficient of €/, > J ftT f:; e ftz ) Pig)__t[,ﬁ"f ---Lﬁng?)_t2 EﬁlPE,?ltlf(e”)dtkj -+ dtadty satis-
- g :
fies

(8815 —i—LO) w(tz) = LW TNt x) — L0 (t @),
W (T,z) = 0.
On the other hand,
9 ple
5Pl (@)emo = B[ (57)S7]

= Bl lf (S UTC(T)CH(T)).

By the chain rule of Malliavin calculus, v € [0,t],

Duif(SY) = f(SUrU 0P80,
Du2f(S5) = o.

Then, we obtain

P I Nemo = Fao [ / (D1 (SIS (1)} (s)ds

Note that, for u <T,
D {FS)CT) } = Dua SN T) + FS)Dusac! (D)

By the integration by parts formula,

E [ / {[Du,lﬂs;‘”)]cl<T>}a<u)du]

_ E[f(exg’ﬁ{clm / a(u)dWi — / [Du,1<1<T>]a<u>duH7
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and we obtain

O ()=

/ fle [ T) / a(u)dWi,u - / [DunC (T)]a(w)dul X = y| p5 (1,2, y)dy.

The higher order approrimation terms of the expansion is given as follows;

10" (e o 1 . (0).t.2
TPl (@)= = 5 / FEERQIXP " = ylp™ (T = t,a,y)dy,
. e

where 19(?) € Do . Then, we obtain an asymptotic expansion formula of the solution to PDE of the stochastic
volatility model around the Black-Scholes solution,

. . ©).
Pg“ltf(e )= ng)) tf )+ Z / fle 198) X(O) b= y]pXT

t,a

(T - t? Z, y)dy + O(6N+1)'

In Corollary 4.1 below, we specifically derive the first order approximation formula of European option
under the stochastic volatility model.

Corollary 4.1 The following approximation formula holds.
CV(T —t,e", K) = CP(T —t,e", K) + ¢C1(T — t,e", K) + O(€%), (4.26)

where CBS(T —t,2,K) denotes the Black-Scholes European option price (with time-to-maturity T — t, spot
price z and strike price K ) and

Ci(T —t,e") = / (€ — K)Twi(t,T,z, z)px(m (T —t,x,2)dy (4.27)
R
= (T; t) pooe’n(d1)(—dz2),
with
wi(t, T, x, z)
_ pUS(Tft)z <(z—a:+;02(T—t))3 _3(2—x+%a2(T—t))_ (z—z+20*(T —1))? 3 1 )
2 (02(T - 1)) (02(T - 1)) (02(T —t))? (T —t))"
g = log (" /K) + 03(T — 1) /2
! oo T—t ’
do=dy —ovVT —t,
1 —d?
n(di) = mexp <2) .
Proof

By Theorem 4.1 |,

a € xT
e PrLf(€)]e=o

T
/ P L'PY_ f(e¥)ds
t

/ f(e)E [CI(T)/ a(w)dWi,u —/ [Dua¢H(D)]a(u)du X3 =y] P (Tt 2)dy.

The conditional expectation above is evaluated as follows;

E [clm / a(u)dWi — / [Dur ¢! (T a(w)dul X O = y] (4.28)
_ pUS(T_t)2 <(zx+§02(Tt))3 _B(zfor%aQ(Tft))_ (zfx+%a2(Tft))2_ 1 )
2 CEGEDE CEDE ) ER=T
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Note that

1P(0) @\ _ o B 3737873 P(O) x
LPL f(e") = pos(T —1t) 925 9 o f(€7). (4.29)
Therefore,
T
/ P L'PT_ f(e")ds (4.30)
N / /<8yaaoPT sfle )> P (s — t.w,y)dyds (4.31)
3 2 0
— pod / / (Ts>(<§y§y) Po_sf(ey)>px()(st,w,y)dyds, (4.32)

3 x(©) ok 92 x(© .
= pop —3) o (s—txy) | 53 p° (T —s,y,z)dyf(e”)dzds (4.33)
rRJR Y3 oy?

= pgg/ (T —s) (683_8wQ>// x(® (s—t,x y)p (T—s,y,z)dyf(ez)dzds (4.34)

z
3 r 63 x(0)
= pop (/t (T — s)ds ) (63:3 8:102) /Rp (T —t,z,2)f(e”)dz (4.35)
S(T—12 (0 &
= TS0 (s i ) PR (1.36)
Take a sequence {fn}n such that fn €S, fr — (- — K)T in &’ (n — o) , we have
/ Fuew (Tt 2)d: — CV(T —t,x, K), (4.37)
R
/ Fn@ (T —t,2,2)dz — CPS(T —t,¢" K), (4.38)
R

/ Fal€wi(t,T,a, 2% (T = o2, 2)de — si((e = K) T wi(t, Ty, )p™ (T —t,2,-))s, (4.39)
R

as n — oo. Then, we obtain

V(T —t,e", K)

_ BS _ x 3 (T — t)2 83 _ 872 BS _ 2
= C”°(T—-t,e" K)+epoy | 72 c” (T —t,z, K)+ O(c”) (4.40)
BS x (T - t) x 2
= C77(T —t,e",K)+ e——=pooe“n(dis)(—dat) + O(€”) (4.41)
— CBS(T e K) + e/ (& — K) wi(t, T, 2, 2)p% " (T — t, 2, 2)dz + O(c3). (4.42)
R

4.3 Barrier Option under Stochastic Volatility Model

In this subsection, we deal with a barrier option of which value is given under a risk-neutral probability
measure as

CB(T - t7 S0, K) = E(t,sg) |:f (S;f)) 1{TE>T}:| 5 (443)

where f(-) stands for a dsicounted payoff function, S(T6 ) denotes an underlying asset value at T and 7€ is the
first hitting time of the region {z : © > B}, i.e. 7° = inf{¢; S,EE) = B}. We cannot directly apply the Malliavin
calculus to the above because Malliavin derivative D;7¢ does not exist (see Remark 2.2 in Fournié et al.
(2001)). However, according to the PDE method developed in Section 4.2 we can obtain the expansion
coefficients by differentiating (4.43) with respect to ¢, that is,

0 c
CLT = t,5,K) = £-|e=0B(t.00 [f (S<T>) 1{T€>T}] , (4.44)

(4.44) is regarded as an extension of the plain-vanilla option case.
This section shows how to derive a new formula for the down-and-out call option prices; the same method
can be applied to the other types of barrier options such as the up-and-out option.
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4.3.1 A-SABR with 8 =1

We will derive an approximation formula for the down-and-out call option price under A-SABR model with
B = 1. That is, suppose that the risk-neutral dynamics of the underlying asset price is given as the following:
for € € (0,1],

dS; = eaSfdt+ oSS dW; So = so, (4.45)
do; = e\l —of)dt+ eaf(detl +4/1— deWf); o5 = oo,
where « is a constant, and A and 6 are positive constants. Let X = log S and then,
dXe _ (05)2 € 1, € _
;= ea— dt + o;dW;; Xo == (4.46)
dof = e\ — o})dt + eof(pdW} + /1 — p2dW2); 0§ = oo. (4.47)

The asscociated generator, £¢ and the partial differential equation for the down-and-out call option price
with barrier price B(< So), maturity T and strike K are obtained as follows:

€\2 €\2 €\2
L= %axr + €p(0§)* 0o + 62%&,‘, + (ea - (";)) Dz + e — 0§)0s (4.48)
O+ LY =0; (0<t<T, z>b=logB) (4.49)
u(T,z) = f(e7) = (" — K)*, (4.50)
u®(t,b) =0, (4.51)

where we assume that the risk-free interest rate is zero without loss of generality: for the case of a nonzero
constant interest rate r, the same derivation is applied if we replace u®(¢,z) and f(e®) by @‘(¢,z) =
e s (t, z) and f(e”) := e "7 f(e”), respectively.

Next, note that 00 = ¢, and X° = X€|e=o follows

0 _ (00)2 1, € _
ax} = —dt+odW); X§ = (4.52)

The associated generator with X° is

o

00)®,  (00)®
2 Oce 2

The expansion up to the first order of the PDE related to the down-and-out barrier call option price is
obtained by a formal expansion;

Oz, (4.53)

O+ L+ e+ )W +eut +--) =0, (4.54)

with appropriate boundary conditions for each order as follows:

(0 + L%’ =0, (4.55)
u’ (T, z) = f(e¥), (4.56)
u’(t,b) =0, (4.57)
(0 + LOYu (b, ) = =L (4, ) £ > b, £ >0 (4.58)
u' (T, z) =0, (4.59)
u'(¢,b) =0, (4.60)
where 9 5 5
1 _ 2 Y v _ v
L' = p(oo) Fodos T30+ NG ao)ago. (4.61)

First, (by an approximation procedure f, — (- — K)T in &’ as n — o0o) we know the formula for the
down-and-out call price under Black-Scholes model (e = 0) as

x 2
WLt z) = CPS(T —t,e",05,0,0,K) — (%) oBs (T —t %,a, 070,1() , (4.62)
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where CB%(T —t,z,0,7,6, K) denotes the Black-Scholes price with time-to-maturity (1" — t), spot price z,

volatility o, interest rate r, dividend yield §(= r — «) and strike price K:
CP5(T —t,2,0,7,6,K) = ¢ *T792N(d1(2)) — e " T KN (da(2)),

where

4 2
N(y) = / eV Dy,

R

da(z) = di(z) —oVT —t.

T—t,

Hereafter, we will use an abbriviated notation C®5(T —t, z, 0, K) for CB5(T —t,2,0,0,0, K).

Note that
? _ ol 92 0
Dzdog " (t,z) = oo(T—1) <8mg ~ oz ) (t,z),
9 o _ iz 9\ ,0
o (t,x) = oo(T —1) (8:52 — 61’) u (t,x).
Thus,
3 2
LY0(te) = pod(T —t) <§x3 - 833:2) WOt z)
9 o
+ agu (t,z)
02 0
+ A0 —00)oo(T — 1) (83:2 — 8:0) u®(t, )
Next, let
_ (T-y 2 9*
g(t,l‘) T 2 p(UO) axaaou (tvx)
+ (Tft)aa—uo(t,:r)
LI
+ 5 A0 — 00) 5o ¥ (t,z)
T —t)? o? 02
- 5 (ax 8902) u(t )
+ (Tft)aa—uo(t,x)
T—t)? )
Then, define

ﬁl (t7 l‘) = ul(tv x) - g(t7 l’)
Hence, we have
O+ LYY (tx)=0; 2 >b, t <T,
W' (T, z) =0,
a' (t7 b) = 7g(t7 b)

z=b

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)
(4.70)

(4.71)

(4.72)
(4.73)

(4.74)
(4.75)
(4.76)

(4.77)

(4.78)



Then, @' (¢, z) is obtained by

T
o' (t,z) = —/ g(s,b)h(s;z,b)ds, (4.84)
t
where h(s;x,b) is the density function of the first hitting time to b:
—(b— b—z+0d/2(s—t :
h(s;z,b) = (b—2) exp f{ 5 0/2( )} . (4.85)
2ro2(s —t)3 205(s —t)
Therefore,
u'(t,z) = 4" (t, ) + g(t, ). (4.86)
Hereafter, we will evaluate g(¢, x), more explicitly.
Note first the following relations:
a BS x T
o [CP(T —t, €%, 00, K)| = " N(di(z)), (4.87)
o} e* BS 32 _ (61> BS 82
e [(B) C (T t, e o0, K || = B C T—t, e ,00, K BN(c1(z)), (4.88)
0 BS T x
- [CPo(T —t,e", 00, K)| = e"n(di(x))VT — t, (4.89)
0 e’ BS .B2 .
s (§> c (T L= 00, K | | = Bala(@)WVT—, (4.90)
p(00)? & CPS(T —t,e" 00, K) = ploo)?e"n(di(z))VT —t{ 1+ (—di(z)) L
dzdog oY ooVT — 1t

p(o0) e n(d () (~da(e) -

= pooe“n(di(z))(—dz(z)), (4.91)
s 07 e’ BS 2 2 —1
oo’ 55 (5) € (T —t, 200 K) = plo0) Brler(@)(—ex(w) VT
— plo)* Ba(er(a))(er(2) -
= pooBn(ci(z))(c1(z)), (4.92)
where
1 —z2
n(z) = Wor exp <2 , (4.93)
_ log(e"/K) +a3(T —t)/2
di(z) = -~ = - 7 (4.94)
d2 (QL') = d1 (m) — 0o T — t, (4.95)
o) = ln(BQ/ewK)—i—ag(T—t)/Q
L (z) P . (4.96)
Then,
gt,z) = (T—1ba [ezN(dl(x)) - (%) ol (T _t, i,ao,K) + BN(q(x))] L @)
+ (T2— 2 A6 — 00) (ezn(dl (2)VT —t — Bn(ci(z)VT — t) (4.98)
— @pao{ezn(dl(x))dz(x) + Bn(ci(z))er(z)}. (4.99)
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(T - t)a [BN(dl(b)) - (g) oBs (T 4, BQ,UO,K) n BN(dl(b))] : (4.100)

g(t,b)

B
+ (T; D08 — 00) (Bn(dy (5)VT — — Br(d (h)VT — 1) (4.101)
+ T o B (6)) ([ 1) + o ()} (4102
= (T —1t) [2BN(di(b)) — CP (T — t, B, 00, K)] (4.103)
(T -t 1 {b—log K + 503(T —)}*\ [ —2(b —log K)
+ 3 pJoB\/%exp ( 202(T — 1) ) < so/T 1 ) ,  (4.104)
where
_  log(e’/K) 1 —
d1(b) = (b) = 70-0@ + 200 T—t (4105)
(/K)o
bb) = L e T L (4.106)

In particular, if the drifts of the underlying asset and its volatility processes are zero, that is a = 0 and
A =0, we have

T
a'(t,x) = —/ g(s,b))h(s;z,b)ds
¢
{b—logK+la2(T—t)}2
- _/T (T=5) g L~ g —2(b—log K)
t 2 Vo oo/T — s
{o-)+@2/n6-0)°
XM{ 202(s—1) ds
2102 (s —t)3
log(B/K)(log(B/S
o UoBB/E) (lo5(85)
o3
1 T 1 *{1UEB/K2+%05(T75)}2 7{logB/S2+%crg(s—t)}2
Xi/ (T*S)W( 1372 ¢ SR e 270(=0) ds, (4.107)
P
t
and
u'(t, )
1 xT
= 5(T = t)poo {e"n(di(z))(~dz(2)) — Brle(@))(er(x))}

log(B/K)(log(B/S

o (o8B 1) 105(5/5)
ers
LT ) —{logB/K2+%o-(2)(T—s)}2 —{logB/S;%ag(s—t)}2
g [ Ce e T e T
t

Finally, we show a simple numerical example of European down-and-out barrier call prices as an illustrative
purpose. Let f(e”) = (e* — K)1, and the parameters of the model are specified as follows:

So =100, r=a=X=0, g9 = 15%, € = 20%, p= —0.5,
B(barrier) =95, T = 0.5, K = 100,102, 105.

Then, the result is shown in Table 1.

Here, the numbers in the parentheses show the error rates (%) relative to the benchmark prices, which
are computed by Monte Carlo simulations with 100,000 time steps and 1,000,000 trials.

Apparently, our approximation formula improves the accuracies comparing with the Black-Scholes barrier
formula.
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Table 1: Down-and-Out Barrier Option
’ Strike | Benchmark | Our Approximation \ Barrier Black-Scholes ‘

100 3.261 3.258 (-0.09%) 3.290 (0.90%)
102 2.640 2.639 (-0.02%) 2.686 (1.78%)
105 1.841 1.841 (0.01%) 1.911 (3.77%)

5 Short-Time Heat Kernel Asymptotic Expansion

This section derives a short-time asymptotic expansion under multi-dimensional diffusion setting: in partic-
ular, the expansion formula developed in Theorem 3.1 is effectively applied.
Consider the following SDE on R" over the d-dimensional Wiener space (W, P).

d
dXi = > V(X))o dWf + Vi(Xy)dt, (5.1)

X, = zheRyi=1,--,n.

where Vi, = (Vi}, -, Vi) with V¥ € Cg°. We assume that o(x) = [0¥ (2)] where 0¥ (2) = ZZ:1 Vil(z)V{ (z)
is positive definite at z = xo. We also define Vk as

. N
Vk:;Vk(;x)%, k=01, --,d. (5.2)
and
1 d
L= VE + Vo. (5.3)
k=1

Let i = (i1, --,im) € {0,1,---,d}™, we set a(i) = #{i¢ : ¢, = 0} and ||i|| = a(i) + m. The following
stochastic Taylor expansion holds (e.g. p.4 in Baudoin (2009)):

N t ) t1 ) tm—1 )
Xt = wo+ Z Z (‘A/ZA o-+-0 Vm) (Vz‘l)(xo)/ odW/{! o / odW,2 - - / odW;im
0 0 0

k=11, il|=k

+Rn(t, z), (5.4)
for some remainder term Ry (¢, ) which satisfies

sup B[R (t,2)%]"/? < Cnt™ 072 sup I (Vi 00 Vi) (Viy)llco- (5.5)
reR™ i,k+a(i)=N+1lorN+2

We first consider the scaling SDE in order to obtain a short-time heat kernel expansion:

d
dX; = €Y Vi(X{)odW) + EVo(X)dt, (5.6)
=1
Xo = xo € ]Rn7

where € € (0,1]. Note that X is equivalent in law to X512t, i.e.
Xi ~F Xy,

and that X{ has an asymptotic expansion:

XE ~ 20+ Z Fx®in D®(R"),
k=1
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where X k) — = (X (k) . -,Xr(ﬁ)), k € N is expressed as the coefficient in the stochastic Taylor expansion at
t=1, i.e.

) 1 ) ty . tm—1
xP=>" (wmo...oviz)(v;g)(xo)/ odW; o/ othf-“/ odW;m. (5.7)
s s 0 0 0

Next, set
1
WY = LAY = (" — o). (5.8)

Then, we have
vt Vvt T — I o
X (t,o,x) =p~  (1,m0,2) =p" (1,0, Tzo) e (5.9)

Note also that the (4, j)-element of the Malliavin covariance matrix of Y = ZZZI fol V(o) o dW¢ is given
as:

d 1
ij 0 0
03210 = Z/o D v YaDi pYjdt
k=1
d
= > Vi(z0)V{ (20) = 0" (o). (5.10)
k=1

Since Yl\/E is uniformly non-degenerate by the assumption that o(zo) is positive definite, the smooth density,
Vi .

p¥ ' (1,yo0,y) for the law of Yl‘ﬁ exists.
Thus, p¥ ' (1,90,y) has an asymptotic expansion by setting € = v/t for Y, where

e}

€ (Xf _:rO) i—1 - (2) - oo n
Yy = —~ X D= (R"). 5.11
: - Z i in D (R") (5.11)
In particular,
d 1
ve=xM = / Vie(20) 0 dWE. (5.12)
k=10

Let Y;7 denotes the i-th element of Y7, that is Y* = (Y15, Y51, -+, Y5 ), and define Yﬁ‘k, keN,i=1,---,n
as

0,k 1dk . (k+1)
Y& = T dek ile=0o =X . (5.13)

Then, applying Theorem 3.1 especially, (3.52), we obtain an asymptotic expansion of pY (1,0,y):

N (7)
) = 20 (X mmor T )
+O(M1), (5.14)
where
(4) Jj

k k=1 1+ +PBr=7,8;>1
Here, it is easily seen that the density of Y is given by

yTo(zg) "ty

P (1,0,9) = (2m) " det(o(z0) 2T E (5.15)
where o(xo) Zk 1Vk (z0)V/ ( 20))(1<i,j<n)-

Consequently, by (5.9), we obtain the following theorem that presents a short-time off-diagonal heat kernel
expansion.
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Theorem 5.1 Ast | 0, we have a short-time asymptotic expansion of the density p™ (t, o, x):

N
x 1 —1/2 _@-eg)To(eg) " (=—=2q)) /2 —1/2
p* (t, o, ) ~ Grty 72 det o(xo) e 2t E t77¢; (t (z — xo)) ,

Jj=0

(5.16)

where o(xo) Zk 1Vk (z0)V/ ( %0))(1<4,5<n)
and (; (t_l/Q(x —xo)) is the j-th push-down of the Malliavin weights (j-th PDE weights in Malliavin-
Thalmater (2006)) defined by

G (P (@ - 20))

4]
2E lHk X7 HXéf? XD =7 2 m]
(J)

ZE [Hk Y; ,HYO By v = _1/2(@'—:50)] . (5.17)

Here, Y and ng are given by (5.12) and (5.13), respectively, and X{l) and Xi(f) are given by

d 1
xM = Z/ Vi (z0) 0 AW}, (5.18)
k=00

. 1 . t1 . tm—1 .
xP = Z (Vimo...o%)(v;)(mo)/ odW[llo/ oth:?.../ odWim.  (5.19)
0 0 0

i[lifl=k

Also,

5] J

>= > ow

k=1 B1++Br=34,8i>2

and
(9) J 1
X=X > W
k k=1 B1+-+Br=74,8:;>1

Remark 5.1 In the diagonal case, the diagonal heat kernel p* (t, o, o) is approzimated by

mdew(mo)*m (Zt%}((})) : (5.20)

where

[5] k
¢ (0) ZEl (x}" HXé‘fa))Xi“—O] (5.21)
=1
7)

ZE[ vy HYo?,f‘ YL =0
k

(5.22)

Next, we provide alternative methods to obtain the coefficients of the expansion.
Let A be the perturbed generator associated with (5.6):

d
EZEV]C +6V0

Then, the generator L€ associated with the process after the transformation, Y;* =

[

@ is given by

d
Z 2 4 elf. (5.23)

M\»—l
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where

0
L"*ZV" onrey)a

i=1

Hence, by applying (3.48) in Theorem 3.1, we have for f € C,(R"),

k=01, -,d. (5.24)

l

i£(0) )+ Ze &) + " Ra(y), (5.25)

where

(v)

ty
Z Z // / Pl i) L7 Pl i) L7 Pl ) L7 P f(yo)dty -+~ dtadta|yo=o,
0

k=1 1+ -+Br=5,8;>1
(5.26)

k .
with £F := %i—kﬁé\ezo, keN,i=1,---,n

6 Applications of Short-Time Asymptotic Expansion

This section shows three examples of Theorem 5.1 in the previous section. In particular, we explicitly derive
short-time asymptotic expansions under stochastic volatility model with log-normal local volatility and
general local-stochastic volatility models. Moreover, we applies (5.17) and (5.26) in Section 4 to computing
the coefficients in the expansions. In addition, for local volatility model in Section 6.1 and Appendix, we
compute the expansion coefficients &;(y)(¢ € N), j = 1,2 in (5.26) by using Lie brackets.(Lie bracket [A, Z]
stands for [A, Z] = AZ — ZA where A and Z are vector fields.)

6.1 Short-Time Asymptotic Expansion for Local Volatility Model
Consider the following time-homogenous local volatility model.

dXt = M(Xt)dt+U(Xt)th, (61)

Xo = ZXo.

Proposition 6.1 Wet | 0, we have

p(t, o, x) ~ m exp {—m} (l + V9, (t, o, ) + tY2(t, zo, 3;)) (6.2)
where
Y1 (¢, zo, x)
- u(xo)hl((:c figzi;/)i,a (@0) %O’(mo)gaa(mo),w((x f(jgzigga (xo))’ (©3)
and
92(t, xo, x)
_ {%aa(%)%ﬁ(m)he((xf(;cgzg/gg,ﬁo (20))

ha((x — 20)/V't, (0% (20)))
(02(z0))*

(620(1:0)0(3:0)3 + Qul(xo)a(xo)?' + 2u(x0)do(x0)o(x0) + 8a(xo)20(xo)2 + 2M($0)2)

+% (00 (x0)0(x0)® + 400 (o) 0 (0) + 3u(w0) I (0))

[y

ha((x — o)/ V1, 02(990))}
(02(20))? '
(6.4)

+
W |

Here, hn(x,X) stands for the Hermite polynomial of degree n with X, that is

2 d"™ 2
hn ) = (=) n _z*/(2%) —x /(22).
(@3) = (-zyre /o L
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Proof 6.1 We apply (5.17) and (5.26) in computation of the coefficients of the expansion.
First, we have the following stochastic Taylor expansion

X: = mo+ Xt + Xot + X3t + Rs(t), (6.5)
where
X1 = / o(xo)dWs,
t s
Xor = / u(zo ds+/ 80(;170)/ o(xo)dW,dWs.
0
Xar = / Ou(x / o(xo)dW,ds

%/ P J(xo)(/s o (0)dW,,)2dW,

/ / (o) dudW, + /0 taa(xo) /0 o (z0) /Oua(a:o)dWUqudWS,

and Rs(t) is a remainder term.
Let X§ be the solution of the following scaling SDE.

dX{ = Ep(X5)dt + eo(X5)dWs,
XS = Xo.

Let A be the generator of X defined by

a=elow Ly eum L
=€ 50 (@) g5 Teu@)y

Consider a transform
€ € 1 €
Yy :fE(Xt) = E(Xt _$0)7 (6'6)

then the generator L of Y has the following form

2 0
T epu(wo + ey)
0y? oy’

First, we apply the push-down of the Malliavin weights to computing the coefficients of the expansion.
Note that Xi and Y, are expanded in D as follows.

1
L= 502(320 +ey)=—

Xi = IO+€X1t+€2X2t+€3X3t+0(54)a
VS = Yo+ eYi + €Y + O(),
where
P ¢
Yor = X1t=5X5|e:0=/ o(xo)dWs,
0
102
Yie = Xoe= 21 9 25Xt le=0
t t s
= /u(xo)ds—i—/ Ba(xo)/ o (0)dWodWs.
0 0 0
10°
Yor = Xz = 31 9 3Xz|e 0

- /Ot dp(wo) /0 o (z0)dWods

= /Ot 820(330)(/03 o (o) dW..) 2 AW,

+/ o (xo) /Su(;to)dudWs—&—/ 9o (zo) /S aa(mo)/ua(mo)dequdWs.
0 0 0 0 0
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Note that Y is uniformly non-degenrate.
The following relation holds,

¥ (¢, 20,7) = p (1, £ (o), fm))%. (6.7)

1. Using Bismut identity,

= a—E [5y (YI(E))} le=o (84(:) is a delta function at y.)
€

i 9 .
— Els, <Y1<0)> H, (Y1<o>7 &Yf >|€:O)}

r 1 1
_ ©y_1 JO,@ _ 9
= =[5 (Yl )UQ(mo){aeyl |E:0/0 (o) dW, /ODl,uaey1 |€=oa(xo)du}]

= E | (Yl(o)) L {(u(mo) + U(mo)ﬁa(mo)/ WSdWS) o(xo)W1 — az(xo)aa(z:o)Wl}]

o?(o)

= / 5y (’U) E[ 1 { <,U,(:E()) + O’(:Co)@o’(mo)/ WSdWS> O’(xo)Wl — Gz(xo)ad(mo)wl} ‘J(:L'())Wl = 'U]
R 0

]

= E [02(1%0) {(u(mo) + a(mo)aa(xo)/ Wdes) o(xo)Wh — UQ(xo)aa(a‘o)Wl} lo(x0)W1 = y]
L i)
2mo(z0)?

=

Note that
1 1
Dl,u/ 0(20) 020 (20)WsdWs = 0(20)0zy0(2){ Wa +/ dWs} = o(20)do(z0)Wh
0 u
Note that

! - = 15 s v — =2
E [/O WsdWs|o(z)W1 = y] = (/0 d > (a(w0)4 U(x0)2) 9

Then, we obtain

9 :
5c” [ (%) b

= {uteo s + gotanonton (55 - 250 ) L= )

o(xo)®  o(wo)! 2mwo(z0)?
2. Alternatively, we can evaluate the coefficients of the expansion in the following way.

N | =

Let
0 1, 0
L = 50' (.Z'())ain,
o2 0
1
L = cr(aco)acr(xo)yafy2 +’u(x0)87y’
22 = Lo o 2 O L oo
= S (@0(0))* + 0(en) 0P (en))s? gy + Olan) g
then
P 1
Sl lomo = [ Pl £ P )l
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Let h be a map y — h(y) such that
hy) = L'Pof(y)=L'Pia_of(y)

— CEFOOYL. =yl =L [ p(s,0,2)f(2)dz

R
82 0 yO
= Cf(l°o)5¢7(96()).71872 + (o) 5~ P (s,9,2)f(2)dz. (6.9)
R
Then, we ezplicitly evaluate (5.26) for j = 1.
P(()1—s)£1P(s)f(y0)|yo:0

0
/ p" (1= 5,90, )h(y)dy|yo—0
R

= / p¥ (1= 5,50,) (z:l / pY°(s,y,z>f<z>dz) dylyo—o
R R

= 0? 0 =
= = 5, %0, 70)do (o 0 o) 5 s,y,2)f(2)dz | dy|yo=o0-
/Rp (1 yy)((( )00 (20} (y = yo) 55 + ki )8y)/Rp (s,5,2)f(2) ) Y|

Note that

0 0 0
P (1= 5,90,9)(y — y0) = (1 = s)a(z0)’p" (1 — s, ¥0:Y) o (6.10)
Therefore, we have

P‘()l_s)Lngf(yo) lyo=0

= (‘%Opy (1—s,90,9) (((1 - S)O(xo)gao(xo)682 + u(mo)a[;> /pro(s,y, z)f(z)dz) dyyo=o0
= 873 v -8 — s)o(x 3 o(x Yo S z 2)dz _
- /R 8y28y0p (1 7y07y) (((1 ) ( 0) 0 ( 0)) /Rp ( 'Y, )f( )d )dy|yo—0

—/Ra%pyo(l—syyo,y) (u(mo)/RpYO(S»y&)f(Z)dZ) dylyo=0

3 0

= (l—S)U(zo)Baa(wo)/ %py (1—s,y0,y) </ p" (9, Z)f(Z)dZ> dylyo=0
R 0 R

+p(o) %py (1—5,90,) (/ pyo(s,y,z)f(z)dZ) dylyo=0
R

3

— (1 - s)o(a0)*do(z0) / (% ( / pY°<1—s,yo,y>py°(s,y,z>dy) F(2)dz] 00

(o) / 2 ( / pY"(l—s,ymy)pY“(s,y,z)dy) F(2)dzlyomo
r 9Y0 R

3

= (1= s)oan) Dolen) o / P (0, T (delygma -+ i) / 2" (1,0, 2) F ()20
0 R R
3

- a- S)U(wo)Sav(wo)%P?f(yo)lyozo T u(wo)aimP?f(yo)ly():m

Then, the first order approximation term is given by

/ Pl o L'PY f(yo)ds|yo—0
0

(/ 1-—s ds) (z0) 80(3@0);3P1f (Y0)]yo=0 +M(Io) Plf(yo lyo=0
0

1 23 3z 1 yo
/R {20 <O’({B0)6 — a(azo)4> —|—,u(xo)g(mo)2}p (1,0,2)f(2)dz. (6.11)




3. Moreover, the coefficient is computed by using the Lie bracket.

1 1 oo i
| PPt =[50 G e e e P il (612

0 0 =0 ’
= (£ 51L%£') PYSwo)luomo, (6.13)

because [L,[L°, L] = 0 and hence all the terms in (6.12) for i > 2 are equal to 0.
The Lie bracket [L°, L] is explicitly computed as follows.

1
50
_ %&(m)aa(m) (0(5% +y0°))

Lot = (20)*0 ((20)00 (20)yd?)

%J?’(xo)aa(xo) (283 + ya;l) .

£'L’ = o(xo)do(zo)yd” (%U(mo)Qc’)Q)

= %Js(xo)aa(xo)ygl.

Then
[['07[’1} — £O£1 o £1£O
= o(20)*80(x0)d”,

Then we have

oy —1 2
(Ll 4 l[ﬁo,ﬁl]) ;e*%(i&g) lyo—0
2 2mwo(z0)?
3

- {mwo) Y +§o(wo>3amn(zo>< y__ % )} L 65) 61

a(wo)? o(z0)8  o(wo)?

The calculation of the second term approrimation is given in Appendix.

6.2 Short Time Asymptotics for Stochastic Volatility Model with Log-
normal Local Volatility

Consider the following stochastic volatility model with log-normal local volatility which includes the Heston
type model:

dS; = rSedt+ \/orSidWs,
So = s0>0,

dvy = a(ve)dt + b(ve)dZs,
vo = v>0,

where W, and Z; are two standard Brownian motions with correlation p.
We have a short-time expansion of density for the logarithmic process .

Proposition 6.2 When t | 0, we have

X (t, z0,2) ~

P exp (_(m—a}o)2> {1 +Vitw; (t,a:o,a:)} , (6.15)

QUot

1
V21t

where x =log s , xo = log so, and

hs((x — x0)/V/, vo) n (r _1, ) hi((z — 20)/V't, v0)
3 2 0

1
wi(t, zo,z) = pr/vob(vo) ” o
0

(6.16)
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Also, the following approzimation formula of the option price holds:

o ® 1 (x — x0)?
Ct,K) ~ e’ — K exp | ——— | dx
(4 1) Ag(m( ) Voot ( 2uot )

(6.17)

(6.18)

(6.19)

(6.20)

+Vt b (e — K)w(t,zo :c)#exp ,M dz.
log(K) U 2ot 2vot
Proof 6.2 We will apply (5.17) and (5.26) in computation. First, we have the following stochastic Taylor
expansion
X = zo+ X+ Xoe + Ra(t),
where
t
X = / VadV.,
0
t 1 1 t 1 s
Xor = /(r—fvo)ds—o—f/ —/ b(vo)dZ,dWs.
0 2 2 Jo Vvo )y

Neat, we introduce a time scaling parameter € = \/t,
€ 1 € €
dXf = é(r— ivt)dt N
dvi = €a(vi)dt + eb(vf)dZ:.
The generator of the above diffusion is

L L1, 10, o
A= qugatelr=gug, tepiblg o

Ov?

Consider a transformY = f¢(X) = %(X — o), then the generator of (Y,v) is given by,

. 1 97 1.0 ? 51 ? 5 9
L= §va—y2 +e(r — iv)a—y +ep\/5b(v)ayav +e §b(v)w +e a(v)%.
X and Y are expanded in D,
Xi = zo4eXu+ X+ 0(63)7
Y = Yo+ eYi+O(e),
where
t
)/E]t = Xlt :/ \/170dWS7
0
t 1 1 t 1 s
Yi: = th:/ (r—fvo)ds—i—f/ —/ b(vo)dZ,dWs.
0 2 2 Jo Vo J,
Note that

l,fﬂ(wo)»fﬁ(w))%-

1. Using the Bismut identity, the first order approximation term is given as

X y Vi
p (t7$07$) =D (

0 ye
— 1 =
20 Lo, leco
0
= E[H1(Yo1,Y11)|Yo1 :y]py (1, y0,9)

1 1
1 0
= U—E[Yﬂ/ VvodWi ¢ */ Dy 1Yi1/vodt[Yor =y — yolp” (1,%0,)
0 0 0

_ {ip\/ﬁob(vo) ((y ;;0)3 -3 (% ;0y°)> +(r=500) ( ;Oyo)}pyo(l,ymy)
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+e gb(v)——&—e a(v)%.

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)



Then we have a approximation formula of the density

i N2
P ~ g e {14 Vi)
where
(y,UO) ( 1 ) h1(y, vo)
1 = 1) My vo)
Cl( :ZUO»?J) 4P\/7b(110) ’UO + (7 2’Uo ™
By (6.25) and (6.26) with yo = 0, we have the formula (6.15).
2. Alternatively, we have
0 ! 0 1p0
&k:oplf(yo)\yo:o = | Pi_gL P;f(yo)ds|yo=0
0
with
1 0 L. . 1.0 ?
‘C - ae‘c ‘5:0 - (T 2’0) 8y + p\/’?)b(’l)) ayav
Note that
8 yO0 1 82 yo
%p (8,y7 Z) = §Saiy2p (57yaz)'
Let g be a map y — g(y) such that
9y) = L'Pf(y)=LPia-9f()
= LEfYOIML =y =L / " (5,9, 2)F()dz,
R

Then, we ezplicitly evaluate (5.26) for j = 1.
P(()l—s)ﬁlp(s)f(yo)‘yo:()

0
= /pY (1— s,90,9)9(y)dy
R

/pro(l —5,90,9) (El/RpYO(Syy,Z)f(Z)dZ) dy

%Sp\fb( )53 Plf(y0)|y0:0 +(r— %U)%Plf(yomo:o

Therefore,
1
/ P L PLf (y0)ds|yo=0
0

= / { pv/00b(vo) ('vz -3 (i)) + (r— %vo) (i})}pyo(l,ﬂ,y)dy

The second order approximation can be obtained in the similar manner.

6.3 Short Time Asymptotics for Local-Stochastic Volatility Model

Consider the following diffusion:

dX: = oe(Xy)dWe,

Xo = x>0,

dor = a(or)dt + b(os)dZs,
oo = o>0,

where W, and Z; are two standard Brownian motions with correlation p.

35

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

vy O 1 83 1 0 yo
Lo s ((Goovi g+ 0= go i) [0 s ) ar o

(6.34)

(6.35)

(6.36)

(6.37)



Proposition 6.3 When t | 0, we have

p(t7 Zo, II:) ~

M) (1+ Vin(t,xo,2)) , (6.38)

B S————
2mo2c(zo)?t ( 205 c(x0)?t

where

n(t, o, x) = (pb(a) + 0286(960)) o’c(x0)? {h?’((x = 0)/ VL, 0" c(x0)") } . (6.39)

(0%c(20)?)?

N | =

Proof 6.3 We compute the coefficient of the first order in the expansion by applying (5.17) and (5.26).
First, we introduce the time scaling parameter € = \/t,

dXt = EO'tC(Xt)th7 (640)
dor = € a(or)dt + eb(or)dZy. (6.41)

The generator A associated with X is given by

2

A = 621020(32)28—2 + 2 pab(o)c(x) + eZa(a)ﬁ + 621 (0)28—2 (6.42)
2 Ox2 Ozdo do 2 do?’ '
When € | 0, A® is degenerate. We consider the following transform,
y - X -0 (6.43)
€
Then the generator L¢ associated with Y 1is elliptic under € | 0 and is given by
P g 02 0? 2 0 21 5 07
_1 o g A N A 44
L 57 c(zo + €y) Ry + epob(o)c(zo + ey) By +e“a(o) py +e 2b(a) pyot (6.44)
and
wtm) = PEf o) = [ 100" 1) (6.45)
R
is the fundamental solution to the following equation,
(9—56) w(ty) = 0 (6.46)
ot » Yo - ) .
u(to,y0) = f(yo).
By differentiating (6.45) at t = 1, we have
6 € YE
Fele=oP1f (o) = f@wiy)p” (1,90,9)dy, (6.47)
R
where the map y — w1 (y) is the first order PDE weight.
1. Using the Malliavin-Bismut-Léandre’s formula, we derive the first order PDE weight w1 (y),
9 e " 0 10
Sol-oPif(w) = | Ph_yL'Pf(yo)ds (6.48)
0

1 1
1
/f(y)ﬁE {YH/ UC(ﬂﬂO)dWl,t—/ DiaYiioe(zo)dt|Yor = y| p(1,y0,y)dy.
R o2c(xo) 0 0

£’ and L are given as follows;

1 o
£’ = 5(jzc(mo)Qfayg, (6.49)
Lt = ozc(xo)é‘c(xo)yﬁ+pob(a)c(x0)872. (6.50)
0y? oyodo
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Note that
2
%pyo(s,yw) = 050(350)2%2pyo(8,y7zx

0 0 0
v (1 =S, y07y)y = (1 - 5)020(;50)28717)/ (1 - $, Yo, y)|yo:0~
Yo
Let g be a map y — g(y) such that
9(y) = L'Pf(y)=L'Pi_q_sf(v) (6.51)
= LB, = / p*" (5,1, 2)f (). (6.52)
R
Then, we ezplicitly evaluate (5.26) for j = 1.
Pt()l—s)l:lP(s)f(ZIO)‘yo=0

0
= /py (1 = 5,90, ¥)9(y) Y| yo=0
R

= / P (1 5,50,) ( 1/ pyo(&y,Z)f(Z)dZ) dylyo=o
R
= / (/ 1 —s)o’c(xo)®de(xo) (8pyo(1 — 5,90 y)) a—QpYo(s Yy z)dy) f(2)dz|yo=0
R yo T oy? e o

0 3 0
; / ( / P (1= s )00 )elan)* (v, z)dy) £(2)dzluom0
R R

3 0 0
= (0= sttt (™ 1 500 ) 7 000 ) 2t

8% o ) 5 0
+/R (/R (—aygp (1 _s,yo,y)) spo’b(o)c(zo)’p (s,y,z)dy> J(2)dz]yo=0

= (1-s)a*c(x0)*dc(xo) o / (/ (1—s,90,y)p" (Sa% z)dy) f()dz]yo=0

+spob(o / (/ (1— 5,90, 9)p" (5,9, Z)dy> f(2)dz]yo=0

83
o 77 () £z spo el o [ 7 (L )5 )l
Yo Y0 Jr

= (1-s)o"c(xo)*dc(xo)

3 83
93 5P 1 (10)lyo=0 + spo’b(0)c(x O)SBT/S’Plf(yO)|y°:0'

= (1-s)o'c(xo)’ 8c(x0)
Therefore, we have
1

Pl L P f(yo)ds|yy=0

3 3

<a4c(1:o)38c(xo)§3 + po’b(o)e(xo)? 68 )Plf(y0)|yo =0.

Nl S—

and

0 Y€ 4 3 X 2 3 N y0
Fecle=op” (Lyoy) = o c(xo) 30(990)873+PU b(o)c(xo) a2 )P (1,90, 9)
0

0

(pb(o) + o”dc(x0)) Uzc(ﬂco):s%pyo(l, v0,y).  (6.53)

N~ N

Setting yo = 0, we obtain the result.

. Next, we compute the first order PDE weight by applying (5.17) for 7 =1 in the following way. First,
X is approximated by stochastic Taylor expansion,

X: = wo+ Xit + Xot + R3(t),
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where

t
X1 = / oc(xo)dWs, (6.54)
0

Xor = /t c(x0) /S b(o)dZ,dWs + /t c0c(xo) /S oc(xo)dW,dWs. (6.55)
0 0 0 0

X© and Y are ezpanded in Do,

Xt(é) = 2o+ eXi+EXo + 0(53)7
Yt(e) = Yo+ €Y + 0(52)v (6.56)
where

8 ¢
Yoo = Xuit= 87X§|e:0 = / oc(zo)dWs, (6.57)

€ 0

19° ' | t s

Vi = Xau=170 L Xflemo = / c(a:o)/ b(a)dZudWs—f—/ U@c(mo)/ oc(xo)dW.,dW(6.58)
0 0 0 ’

Then, the PDE weight is caluculated as follows,

1 1 1
wi(y) o2c(z0)? E [Yll/o oc(zo)dWi —/ Dy 1Yiioc(xo)dt|Yor = y}

_ L o?b(o)e(zg)? 1B W0 “c(@0)®) 1 4 20)29e(zg) 18 W22 *c(w0)?)
- <<2” bo)elao) T oratmma T 27 ) 00 T oy )>
s ha(y,0c(a0)?)

1 2 2
3 (P6(0) + 0" delwo)) o elwo)" = 5 oy

The following formula holds,

€ 1
p (17x07:c) = p(L 01 f(m))z7
and we have
_ WVt
p(t, o, ) = p* (1,20, z). (6.60)

Then, we obtain a short time off-diagonal asymptotic expansion of heat kernel,

1 (zo — m)2
p(t, o, x) ~ W exp <2a§c(mo)2t> (1 + \/En(t,a:o,m)) , (6.61)
where
n(t, o, ) = % (pb(o) + 0280(:160)) o*c(wo)? hs((a _(:gi{:g;jg clzo) ).

6.4 Numerical Example

This subsection provides an numerical example for option pricing under the short-time asymptotic expansion.
In particular, we use the following Heston model:

dSy = oS dWi, (6.62)
dve = k(0 —ve)dt + v/ o (pdWis + /1 — p2dWay),

with parameters Sp = 100, vo = 0.16, kK = 1.0, § = 0.16, v = 0.1, p = —0.5.
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y 0 hz y,UQC(fL‘o)Q)
(cr (a2 B ) <pa b(o)e(xo) / / duds (02c(z0)7)2 +oe (z0) 5‘0 (z0) dud

hg (y, 0% c(xo
(02¢(x0)?

)))
)?

(6.59)



The call option price with strike K and maturity t is approximated as follows;

Ct,K) = E[(S;: — K)T] ~ Co(t, K) + VtCi(t, K) + tCs(t, K),

where
ot K) = / (&% — K)*plt, w0, )d,
R
Ci(t,K) = /(em—K)+w1(t,xo,x)p(t,ajo,x)dx,
R
Co(t,K) = /(e'T—K)+w2(t,xo,x)p(t,xo,x)dx.
R

(6.63)

(6.64)

Here, p(t, zo, z) is given in (6.15), and w1 (¢, xo, ) and w2 (t, zo, ) are given in the following:

wtane) = o EZIONLW (L) ezl /vhw)
0
1 h _ i,
wa(t, w0, w) = 51/2’0(2);)2 o((z “;%)/\[ Vo)
0

ha((x — 20) /v, v0)

1 1 1 52 o5 1 9 )
+ (4(r 21)0),01/1)0 + 121/ vop” + 36p v+/Uovo

4
Yo

1 1
+ (—V2vop2 +s(r—

16 2 2

Table 2: Short time asymptotics 7" = 0.1

(6.65)

ha((x = 20)/v/t,v0)

1 5 1 1 5 1 22)
vo)” + 125(0 Vo) 4pZ/ Vo+/Vo 161/ P

2
Vo

(6.66)

’ Strike \ Benchmark | HKE order 2 HKE order 1 HKE order 0 | Error order 2 Error order 1  Error order 0 ‘
70 30.01 30.01 30.00 30.81 -0.01% -0.02% 2.67%
80 20.19 20.19 20.18 20.95 -0.01% -0.04% 3.78%
90 11.38 11.38 11.37 12.02 -0.04% -0.11% 5.60%
100 5.04 5.03 5.02 5.47 -0.14% -0.30% 8.66%
110 1.70 1.69 1.68 1.93 -0.37% -0.84% 13.95%
120 0.44 0.43 0.43 0.53 -0.80% -2.33% 22.82%
130 0.09 0.09 0.08 0.12 -1.38% -6.04% 36.91%

Table 3: Short time asymptotics T = 0.2

’ Strike \ Benchmark | HKE order 2 HKE order 1 HKE order 0 | Error order 2 Error order 1  Error order 0 ‘
70 30.15 30.14 30.12 31.72 -0.03% -0.09% 5.19%
80 20.86 20.84 20.82 22.29 -0.06% -0.17% 6.88%
90 12.94 12.93 12.90 14.14 -0.13% -0.33% 9.27%
100 7.12 7.09 7.07 8.02 -0.31% -0.66% 12.71%
110 3.46 3.44 3.42 4.07 -0.63% -1.35% 17.67%
120 1.50 1.48 1.46 1.87 -1.14% -2.75% 24.73%
130 0.59 0.58 0.56 0.79 -1.84% -5.41% 34.48%

A Second Order Approximation in Section 6.1

1. Applying Bismut identity, the weights of second order approximations are calculated as follows.

10%
2 Oe?

39
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Table 4: Short time asymptotics 7' = 0.3

Strike \ Benchmark | HKE order 2 HKE order 1 HKE order 0 | Error order 2 Error order 1  Error order 0 ‘

70 30.44 30.42 30.38 32.74 -0.07% -0.21% 7.53%
80 21.63 21.61 21.56 23.71 -0.12% -0.35% 9.60%
90 14.26 14.23 14.18 16.02 -0.24% -0.60% 12.35%
100 8.70 8.66 8.61 10.10 -0.49% -1.06% 16.01%
110 4.93 4.89 4.84 5.96 -0.89% -1.91% 20.89%
120 2.61 2.58 2.53 3.33 -1.47% -3.38% 27.30%
130 1.31 1.27 1.23 1.77 -2.24% -5.83% 35.59%

Table 5: Short time asymptotics 7' = 0.4

Strike ‘ Benchmark | HKE order 2 HKE order 1 HKE order O | Error order 2 Error order 1  Error order 0 ‘

70 30.83 30.79 30.71 33.83 -0.12% -0.37% 9.74%
80 22.41 22.37 22.29 25.13 -0.20% -0.57% 12.11%
90 15.41 15.35 15.27 17.74 -0.38% -0.92% 15.11%
100 10.04 9.97 9.88 11.94 -0.68% -1.51% 18.94%
110 6.21 6.14 6.06 7.69 -1.15% -2.49% 23.79%
120 3.68 3.61 3.53 4.77 -1.80% -4.07% 29.87%
130 2.09 2.03 1.95 2.87 -2.64% -6.49% 37.41%

Iterating the Bismut identity, the terms of £ H2(Yo1,Y:3) are calculated as follows:

B[ (Y, 5 @) ) lotwo) W, = ]

((z0)t) 020

1
2

1) |:H2 (Yt(o),,u(mg)ta(xo)aa(mo)//Wdes) |o (o)W = y]

ha(y, o”(x0))
(0% (20))*

H, (Y;@,;(a(ggo)aa(;po))? (/0 Wde5> ) o (0) Wa —y]

hﬁ (y7 02 (.’Eo))
(02(20))®
ha(y, o* (o))
(02(20))*
2 ha(y, 0% (x0))
(0%(x0))?

- %t%(mo)tag(fﬂo)aff(xo)

E

1
= §t2(8a(mo))206(a¢o)
1
2 {1 (00(@0))P0" (0))
1.9
+1t (o(w0)0c(x0))
The terms of Hi(Yo1, Y21) are calculated as follows,

E {Hl (y;m),au(xo)a(xo) / Wsds> o (o) Wy —y}

1 2
= 39u(@o)o (zo)t (02(w0))?
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t
E [Hl (Yt(o), %UQ(xo)aza(xo)/ Wdes> lo(zo) Wy = y}
0

éaQ(azo)82a(azo)03(mo)t3 ha(y, o (20))

(02(w0))*
102 21920 (20 o (2 2 ha(y, 0° (x0))
+79 (@0)8 a(z0)o (o)t 02w

E {Hl (YJ(’), w(z0)do (w0) / de5> o (o) Wy —y:|

th(y,a2(m0))’

1
= gul@0)do(wo)o (o)t = 5o

E |:H1 ()/;(0)7 (80(:50))20(330) ‘/75 /S WuqudWS) |o(xo)Wr = y:|

_ éaa(xo)QU(xo)‘lt?’M

(02(0))*
Therefore, we obtain the second approximation term
22 e
53 B0y (Y{)]le=o
. 1 2 6 h6(y702($0)))
= { 80(:00) o (wo)i(a%xo))ﬁ
41 5 2 ha(y, 0*(z0))
6 (8 o(xo)o(xo)” + 400 (x0) o (z0) + 3#(1’0)30(1‘0)) @)t
12 3 / 2 2 2 2y ha(z, 0% (0))
+Z (8 o(zo)o(xo)” + 2u (zo)o(z0)” + 2p(x0)do(xo)o(xo) + do(zo) o (x0)” + 2p(zo) ) @)
Xp(17x07y)' (Al)
2. Using the Lie bracket, the second order term is calculated as follows.
19 0 ‘o
2 9e 2|e oP t / / P(t t1) E Pt1 tg)ﬁ Ptzf(yo)dt2dtl|yo 0+/ P(t t1>£ Ptlf(yo)dtl|yo 0-
0

The first term is given by

/ / (L' 4 (t —t)[L°, L)L + (t — t2)[L£°, L)PY f (yo)dtadts |yg—o,
since [£°, [£%, £Y])] =

The second term is given by

[ e )l 221+ a0 I P o

because [£°, [£°,[£°, £']]] = 0.

Then we have

10° ye
282|50p (10y):

= (L2 L L L L L (£ 4 G LUE £ L% L1E + SIE% L) 5 (Lo, oo
(A.2)

where

(L)

[NE

YO
p (LZIan) = €
2no(x0)?
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Each terms are calculated as follows.

0
£2p" (1,90, ) |yo=0 = 0,

1 0 1 1 1 0

5[50752]17}/ (1,90, Y)lyo=0 = 50'(900)2 (C‘M(HCO) + 530(760)2 + 5320(1‘0)0(550)) *p" (1,90, ¥)lyo=0,
1 0 1 0
6[[’07 [‘Cov 52”py (1,90, Y)|yo=0 = 60(I0)4 (00(‘7:0)2 + 820'(300)0(&00)) a4pY (1,90, 9)|yo=0,

(90 (x0) o (x0) (o) + 11(20)*)0%p”" (1,40, 9)lyo=o0

N —

(LI)QP(L Yo, y)ly(J:O =

1 0 1 0
7L (2%, £1p" (1,50, ¥)|yo=0 = gu(wo)a(wo)300(mo)84py (1,90, 9)|yo=0,

1 0 1 0
g[ﬁoyﬁl}ﬁlpy (1,90, Y)|yo=0 = 6(#(360) + 30(20)90(0)) o (20)* 0o (20)0* P (1,50,)|yo=0,

L1 LB (1, o,y =0 = 50 (20)°00 (20 0% (10, )lun=o.
Hence, we have
10°
2 O¢€?
— {§00(w0)’0" o)

le=op” (1,0,)
he(y, 02 (z0))
(02(20))°

+% (00 (z0)o(x0)® + 400 (x0) 0 (20) + 3u(x0) o (x0)) ha(y, o"(x0))

(0% (20))*

J& (0%0(z0)o(x0)® + 24/ (z0)0(x0)” + 2p(x0)0 (z0)0 (x0) + Do (w0) 0 (w0)* + 2pa(w0)?) W}
<" (1,0,p). (A.3)

Therefore, we obtain the result.
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