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1. Introduction

Recently a considerable interest has been paid on the estimation problem of the
realized volatility by using high-frequency data of financial price processes in fi-
nancial econometrics. Since the earlier studies often had ignored the presence of
micro-market noises in financial markets and there has been a consensus that the
micro-market noises are important in high-frequency financial data, several new sta-
tistical estimation methods have been developed. See Bandorff-Nielsen et al. (2008)
and Malliavin and Mancino (2009) for recent literatures on the related topics. In
this respect Kunitomo and Sato (2008a, b) have proposed a new statistical method
called the Separating Information Maximum Likelihood (SIML) estimation for es-
timating the realized volatility and the realized covariance by using high frequency
data with the presence of possible micro-market noises. The SIML estimator has
reasonable asymptotic properties; it is consistent and it has the asymptotic normal-
ity (or the stable convergence in the more general case) when the sample size is
large and the data frequency interval is small under a set of regularity conditions for
the non-Gaussian underlying processes and wvolatility models. Kunitomo and Sato
(2010, 2011) have also shown that the SIML estimator has the robustness properties,
that is, it is consistent and asymptotically normal even when the noise terms are
autocorrelated and/or there are endogenous correlations between the market-noise
terms and the (underlying) efficient market price process. There has been recent
finance literature on the importance of these aspects in high frequency financial data
including Engle and Sun (2007), for instance.

In this paper we shall further investigate the robustness property of the SIML
estimation when we have the micro-market adjustment mechanism and the round-
off errors in the process of forming the observed prices. The micro-market models
including the price adjustments have been discussed in the framework of micro-
market literature in financial economics (Hansbrouck (2007), for instance). Among
many micro-market models, we first take the (linear) adjustment model proposed

by Amihud and Mendelson (1987) as a benchmark case in our investigation; Then



we shall extend it to the linear and nonlinear price adjustment models and we
regard a continuous martingale as the hidden intrinsic value of underlying security.
A new feature in this context to financial econometrics is to utilize the nonlinear
(discrete) time series models and a possible non-linear model is the Simultaneous
Switching Autoregressive (SSAR) model developed by Sato and Kunitomo (1996)
and Kunitomo and Sato (1999). Also we shall consider the round-off error model as
a non-linear transformation for financial price data. The problem of round-off error
models has been recently investigated in statistics (Delattre and Jacod (1997), for
instance) and it corresponds to the fact that in actual financial markets we have the
tick-size effects (the minimum price change size and the minimum order size) as we
shall discuss in Section 3, and we often observe bid-ask spreads on securities in the
stock markets, for instance.

In these problems there is a common econometric aspect that the observed price
can be different from the underlying intrinsic value of the security and we can in-
terpret this phenomenon as a nonlinear transformation from the intrinsic value to
the observed prices. We can represent the present situation as the nonlinear statis-
tical models of an unobservable (continuous-time) state process and the observed
(discrete-time) stochastic process with measurement errors. When the effects of
measurement errors are present, it seems that the existing statistical methods mea-
suring the realized volatility and covariance have some problems to be fixed in var-
ious ways. They could handle the problem of our interest, but often they need
some special consideration on the underlying mechanism of price process. On the
contrary, we shall show that the SIML estimator is robust in these situations; that
is, it is consistent and asymptotically normal as the sample size increases under a
reasonable set of assumptions. The asymptotic robustness of the SIML method on
the realized volatility and covariance has desirable properties over other estimation
methods from a large number of data for the underlying continuous stochastic pro-
cess with micro-market noise in the multivariate non-Gaussian cases. Because the
SIML estimation is a simple method, it can be practically used for analyzing the

multivariate (high frequency) financial time series.



In Section 2 we introduce the standard model with micro-market noise and the
SIML method. We also discuss the asymptotic properties of the SIML estimator in a
general situation. Then in Section 3 we give the asymptotic properties of the SIML
estimator when there are micro-market adjustments and the round-off error models.
In Section 4 we shall report the finite sample properties of the SIML estimator based
on a set of simulations. Finally, in Section 5 some brief remarks will be given. Some
mathematical details of the proofs of theorems in Section 3 are given in Appendix
A, and tables and figures based on simulations in Section 4 are given in Appendix

B.

2. The SIML Estimation and its Asymptotic Properties

2.1 The SIML Method

We summarize the derivation of the separating information maximum likelihood
(SIML) estimation. Let y;; be the i—th observation of the j—th (log-) price at ¢
for j = 1,---,p;0 = ¢7 < 7 < -+o <" = 1. Weset y; = (yir,**+,¥ip) be a
p x 1 vector and Y,, = (y;) be an n x p matrix of observations. The underlying
(vector-valued) continuous process X(t) (0 < ¢ < 1), which is not necessarily the
same as the observed (log-)prices at ¢ (i = 1,---,n) and let v; = (v;1,-++,v;) be

the vector of the micro-market noise at . We assume

(2.1) yi=%x+vi , x;=X(t]) ,
and
(2.2 X(t) = X(0) + [ SV (s)dB, (0<t<1)

where £(v;) = 0, £(v;v;) = Z,, Byisagx1 (g > 1) vector of the standard Brownian
motions, Z;ﬂ(s) is a p X g vector function adapted to the o—field F(x,,B,,r < s),

and the instantaneous covariance function is X,(s) = (U(I)(S)) = D2(5)Bl2(s)

ij
(o)

ii () is the (4, j)-th element of 3,(s) ). The main statistical problem is to estimate



the quadratic variations and co-variations
() '
(2.3) 5, = (0@) = /0 5, (s)ds

of the underlying continuous process X (¢) (0 <t < 1) and the covariance X, = (O'Z(;}))
of the noise process v; (i = 1,---,n). We use the notation that UZ(jI) and UZ(;-}) are the
(1, 7)-th element of ¥, and X, respectively.

In order to derive the estimation method, we consider the standard situation
when x; (0 < ¢t < 1) and v; (i = 1,---,n) are independent with ¥,(s) = X,
(time-invariant), and v; are independently, identically and normally distributed as

N,(0,%,). Then given the initial condition yy, we have

(2.4) Y, ~ Nusyp (1o ¥, 1 ® By + C,C,, @ hy 3 )
where
-1
1 0 --- 0 0 1 0 0 0
1 1 0 0 -1 1 0 0
(2_5) C, = 1 1 1 0| = 0 . . ... 0 ,
1 -1 1 0 0 -1 1 0
1 --- 1 1 1 0 0 -1 1

!

1, =(1,--,1) and hy, = 1/n (= 7 — 7).

n

We transform Y, to Z, (= (z,)) by
(2.6) Zn = h,'"P,C" (Y, — Yo
where Yy =1, - yé), P, = (pjx) and for j,k =1.--- n,

(- 35)] -

(2.7) Pk =

Then the likelihood function for (2.4) under the Gaussian noise distribution can be

written as
1 np n {—lz;c (aknzv + 2:1;)_1 Zk}
(2.8) L,(0) = NG II e, + =, 2l 2 ,
T

k=1



where

(2.9) g = Ansin® [g (21‘7_1)] (k=1,---,n).

n+1

Because the ML estimator of unknown parameters is a rather complicated function
of all observations and each ay, terms depend on k as well as n, one way to have
a simple solution of the problem is to approximate the likelihood function in some
sense. When k (or k) is small, a, is small and then we approximate (—2)xlog L, (0)
by

(2.10) Ly, (0) = mlog |, + Y 2,5, 2 .
k=1

Similarly, we consider the corresponding terms when a,i_j, is large and approxi-
mate (—2) x log L, (0) by

n

(2.11) Loy (0) = Z log |ag, 20| + Z zlk[aknEU]_lzk.

k=n+1-1 k=n+1-—1

Let m and [ be dependent on n and we write m,, and [, formally. Then we define

the SIML estimator of ¥, by

. 1 & /

2.12 Y, = — 7,2
(2.12) — 192:31 K2
and the SIML estimator of 3, by

A T
(2.13) 3, = = o apazizy .
" k=n+1-I,

The numbers of terms m,, and [, we use are dependent on n such that m,,[,, = oo
as n — oo. We impose the order requirement that m, = O(n®) (0 < @ < 1) and

I, =0(n?) (0 < B < 1) for £, and X,, respectively.

2.2 Asymptotic Properties of the SIML estimator in the
Simple Case

Since the SIML estimator has a simple representation, it is not difficult to derive the
asymptotic properties of the SIML estimator. In order to make our arguments clear,

we first consider the asymptotic normality of the SIML estimator of the realized

6



volatility and the realized covariance in the simple case. However, it is appropriate
here to stress the fact that we do not assume the Gaussainity on the noise process
to develop the analysis of the asymptotic properties of the SIML estimator.

Let r; = x; — x;_1 and the (constant) covariance matrix is given by
(2.14) £ [n rir;|]:n,i,1] =3,

for all i (i =1,---,n). When Z/2(s5) (0 < s < 1) does not depend on s, we write
%1/2(5) = ©1/2) and the realized covariance matrix ¥, = (agfl)) is a constant (non-
negative definite) matrix. In the standard model Kunitomo and Sato (2008a) have

shown the next result.

Theorem 2.1 : We assume that x; and v; (i = 1,---,n) are independent and they
follow (2.1) and (2.2) with £,(s) = X, (positive definite) for s € [0, 1], £[||/nr:]|*] <
0o and E[||vi||'] < co. Define the SIML estimator 3, = (&é?) of ¥, = (0'!(;2)) and
3, = (6%) of £, = (o)) by (2.12) and (2.13), respectively.

(i) For m;, =n®* and 0 < o < 0.5, as n —» 0o

(2.15) -3 50.

(ii) For m,, =n* and 0 < o < 0.4, as n — 0

(2.16) Vi (61 — oG] 25 N (o, ool 1 [a;z>]2> .

The covariance of the limiting distributions of \/m,, [652) - a;fl)] and /mn |6\ — o]

is given by agfc)agf) + Ugf)U;(L? (9, h, Ky l=1,---,p).

2.3 Asymptotic Properties of the SIML estimator when the

Instantaneous Covariance function is Time-varying

It is important to investigate the asymptotic properties of the SIML estimator when
the instantaneous volatility function X,(s) is not constant over time. When the re-
alized volatility is a positive (deterministic) constant a.s. (i.e. aé? = agfl)(s)ds is
not stochastic) while the instantaneous covariance function is time varying, we have
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the consistency and the asymptotic normality of the SIML estimator as n — oo.
For the deterministic time varying case, the asymptotic properties of the SIML es-

timator can be summarized as follows. (The proof has been given in Kunitomo and

Sato (2010).)

Theorem 2.2 : We assume that x; and v; (i = 1,---,n) in (2.1) and (2.2) are
independent, X, = [ X,(s)ds is a constant (or deterministic) positive definite ma-
trix, E[||v/nri||!] < co and £[||v,]|*] < co. Define the SIML estimator 3, ( ) of
¥, = (a!(]"fl)) by (2.12) and (2.13), respectively.

(i) For m;, =n®* and 0 < o < 0.5, as n — 00

(2.17) 2, -2, 0.

(ii) For m,, = n® and 0 < o < 0.4, as n — 00

(2.18) Vi 65 = o] 5 N0, V]

provided that

Vi = M]l ag)(s)ds} {/01 O'}(;Z)(S)ds] + [/01 ng)(s)dsr

Y (e - 1) [/t wes [ oies+ [ o [ ol (s)ds

ij=1 ti-1 tj-1 tiz1 -

converges to Vy,, which is positive constant and for ¢,j =1,---,n,

1 T o, 1 T .
(2.19) ¢;; = — Z{cos[Qn - 1(2 +7—=1)(k— 5)] + cos[2n 7 5

There are some remarks on the limiting distribution of the SIML estimator and

its asymptotic covariance formula in Theorem 2.2. The quantity V;;h ., defined by
2 = bi i ti T
ve — 3 (mac; = 1) l /t "ol (s)ds /t o (s)ds + / g7 (s)ds | 1 aéh)(s)ds]
1,j= i—1 J— ti— J—



is bounded because [ o) (s)ds is bounded.

Then it may be reasonable to assume the convergence of Vg(,f.)n
(z)

on (5) = agfl) is constant, then

to the second part of

Van (Vg(,?), say). When the instantaneous covariance o

[/01 a,(;fl)(s)ds] + [/01 aég,?(s)dsr ,

which is equivalent to the asymptotic variance in (2.16). Furthermore, when p = 1,

1
(2.20) Vyp = / o) (s)ds

0

we have 0., = 0% and V,, = 20,,.
When ¥, is a random matrix, we need the concept of stable convergence. The
results of Theorem 2.2 can be held in the proper stochastic case with an additional

assumption.

Theorem 2.3 : We assume that x; and v; (i = 1,---,n) in (2.1) and (2.2) are
independent and X(s) > 0 (positive definite). Additionally we assume that each
elements of £,(s) (0 < s < 1) and 2, = [} Z.(s)ds are bounded and E[||v;||*] < oo.
Define the SIML estimator 3, = (6!(]"2)) of ¥, = (a!(]"fl)) by (2.12).

(i) For m, =n%and 0 < @ < 0.5, as n — o0

(2.21) ¥, -2, 0.

(ii) For m,, = n® and 0 < a < 0.4, as n — oo we have the weak convergence
(2.22) Zohn = /i (65 — 0] 5 23,

where the characteristic function g,(t) = E[exp(itZy,.,,)] converges to the character-
istic function of Zj,, which is written as
Yot

(2.23) g(t)y=Ee™ =

and we assume the probability convergence given by
! e L@ avdsl
(2.24) Vi = [/0 a;ﬂ;)(s)ds] [ RO +{ I (s)ds]

n ti t; .
+ plim Y (mycf; — 1) Vt ol (s)ds /t._la,gg(s)ds

ij=1 i-1 i

t; t;
+/ O'é?(s)ds/] aﬁ)(s)ds] :
ti—1

ti—1




3. Robustness under the Micro-market adjustments and the
Round-off error models

3.1 A General Formulation

In this section, we shall re-consider the standard model given by (2.1) and (2.2). We
set p = ¢ = 1 and treat the univariate price process because it may be often rather
straightforward to extend the results reported in this section for p = ¢ = 1 to the
multivariate cases when p > 1. One extension of the present problem would be to

consider the a sequence of discrete stochastic process given by

(3.1) y(t7) = h (e(0), gy, u(t}) , 0 <t <H7)

where the (unobservable) continuous martingale process z(t) (0 < ¢t < 1) is de-
fined by (2.2), u(t?) is the micro-market noise process. For the simplicity we as-
sume that E(u(t?)) = 0, E(u(t?)?) = o2, and h(:) is a measurable function at
0=t <th <---<th=1witht? =t , =1/n(i=1,---,n).

There are several special cases of (3.1), which have some interesting aspects for prac-
tical applications on modeling the financial markets and the high frequency financial

data. As we shall discuss, some of the financial models for micro-market price ad-

justments and the round-off-errors models for financial prices can be represented as

(3.1).

3.2 A Micro-market price Adjustment model

There have been a large number of micro-market models in the area of financial
economics in the past which have tried to explain the role of noise traders, in-
siders, bid-ask spreads, the transaction prices and the associated price adjustment
processes. (See Hansbrouck (2007) for the detailed discussions on the major micro-
market models in financial economics, for instance.) We illustrate the underlying

arguments on the financial markets by showing some figures (Figures 3-1 and 3-2)

10



in Appendix B. For this purpose, we denote that P and () are the price and the
quantity (demand, supply and traded) of a security ' . When the demand curve
and supply surve for a security do not meet as Figure 3.1, there is no transaction
occurred at the moment in a financial market. The minimum (desired) supply price
level P is higher than the maximum (desired) demand price level P, and then there
is a (bid-ask) spread. When there were some information in the supply side indicat-
ing that the intrinsic value of a security at ¢ could be less than the latest observed
price at t — At (i.e. V; — P_ay < 0, At > 0), however, the supply schedule would
be shifted down-ward When, however, there were some information in the demand
side indicating that the intrinsic value of a seculity at ¢ could be higher than the
latest observed price (i.e. V; — P,_a; > 0), the demand schedule would be shifted
up-ward. In these situations while the trade of a security occur at the price P* and
the quantity Q* as in Figure 3.2, the financial market would be under pressure to
further price changes.

We set y; = P(t?) (i=1,---,n) and 2; = X(t") (i = 1,---,n) withp = ¢ = 1.

We consider the (linear) micro-market price adjustment model given by
(3.2) P(t}) = P(ty) = g [X(#) = P(#L)] + u(®) |

where X (t) (the intrinsic value of a security at t) and P(t?) (the observed price at
") are measured in logarithms, the adjustment (constant) coefficient g (0 < g < 2),
and u(#?) is an i.i.d. sequence of noise with E[u(t?)] = 0 and E[u(t?)?] = 2.
We first consider the specific model (3.2), which was originally proposed by Amihud
and Mendelson (1987), as an example because it has been one of well-known mod-
els involving transaction costs, interactions among market participants and micro-
market structure. We shall depart our discussion from the Amihud-Mendelson model
because we are mainly interested in the price adjustment dynamics of a security while
their main purpose of study was to investigate the micro-market mechanisms by us-

ing daily (open-to-open and close-to-close) data. While Amihud and Mendelson
(1987) used that X (1) follows a (discrete) random walk process in the discrete time

L This is only an illustration for the exposition, which may be analogous to the current market

practice for the periodic call option of the Tokyo Stock Exchange (TSE).
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series framework, we assume that X (¢) is a (scalar) continuous martingale, which is
represented as

(3.3) X(0) = X() + [ 0B, (0 <1 <1).

where B, is the standard Brownian motion on [0,1] and 0 < f{ 02ds < oo (a.s.).
We consider the situation that we have a sequence of discrete observations P({7')
with 0 = ¢ <t < --- <t =1 and the main purpose is to estimate the realized

volatility of the intrinsic value of the underlying security
1

(3.4) Y :/ olds .
0

We re-express (3.2) as

35) P = (- )P+ gX () +u(t)
= (X)X - gPulr)

+ 91— 9’ X (55) + (1 — g)'u(tf)]

and

36 (-gyX) = 0-o|x@)+ [ oan)]

= (-ayx -0 | [

t

asst] )

ij
Then we have the next result and the proof will be given in Appendix A, which is

similar to the one given in Kunitomo and Sato (2010).

Theorem 3.1 : Assume 0 < ¢ < 2 in (3.2). Define the SIML estimator of the
realized volatility of X (¢) with m, = n* (0 < a < 0.4) by (2.12) with p = 1.
Then the asymptotic distribution of \/m,, [flm - Ex] is asymptotically (m,,,n — o)
equivalent to the limiting distributions given by Theorem 2.1 Theorem 2.2 and

Theorem 2.3 under their assumptions.
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We note that the present micro-market (linear) adjustment model is quite similar
to the structure of the micro-market model with autocorrelated micro-market noise

discussed in Kunitomo and Sato (2010).

3.3 The Round-off-error model

Next, we consider the round-off-errors model with the micro-market noise. One
motivation has been the fact that in real financial markets transactions occur with
the minimum tick size and the observed price data do not have continuous values.
The traded quantity also usually has the minimum size in actual financial markets.
For instance, the Nikkei-225-futures, which have been the most important traded
derivatives in Japan (as explained in Kunitomo and Sato (2008b)), has the minimum
10 yen size while the Nikkei-225-stock index is around 10,000 yen in the year of
2010. (See Hansbrouck (2007) for the details of major stock markets in the U.S.,
for instance.) Thus it is quite interesting and important to see the effects of round-
off-errors on the estimates of the realized volatility when we have realistic round-off
errors. We can illustrate the underlying typical argument on the financial markets
by showing Figure 3-2 in Appendix B. When the demand curve and supply curve
do meet at a point as Figure 3-2, the quantity QQ* is traded at the price P*. Still
there would be excee demand which could not be traded at the particular moment
because of the positive tick-size (7 > 0) and the minimum order size effects, i.e. the
number of orders should be integers in actual financial markets.

We assume that
(3.7) P(t}) = P(£,) = g, [X(5]) = P(t,) +u(t})]

where u(t?) is an i.i.d. sequence of noise with E[u(t?)] = 0,€[u(t?)?] = 02 and the

nonlinear function
x

(33) o) =1 M ,

where g¢,(y) is the integer part of y and [y] is the largest integer being less than y

and 7 is a small positive constant.
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This model corresponds to the micro-market model with the restriction of the
minimum price change and 7 is the parameter of minimum price change. We set

y; = P(t!") and x; = X(t?) (i =1,---,n). We represent (3.7) as

(3.9) P(t7) — X (V)
= g, [~(P(t7)) = X(£) + AX(#]) + u(t])] = [P(£) = X(£,) — AX(1])]
gy [P(ty) = X(#21), AX (), u(t)]

where
&
(3.10) AX (1) = / 0,dB,
iy
is a sequence of martingale differences.
Define
(3.11) W(t) = P(t)) — X (&) — u(t}) .

If |P(th,) — X(t?) — u(t?)] > n, then from (3.7) we have P(t) = X (1) + u(t?),
which means W (¢?') = 0. On the other hand, if |P(t_,) — X (t7) — u(t})| < n, then
P(t") = P(t* ;) and |[W(¢?)| < n. By defining v; = w(¢t?) + W(t?) (i =1,---,n), w
have the condition

(3.12) (W) <n.

By using the similar arguments to the results reported as Theorems 2.1, 2.2 and 2.3
on the limiting distribution of the realized volatility estimator (Kunitomo and Sato

(2010b), we have the next result. (The proof will be given in Appendix A.)

Theorem 3.2 : Assume (3.7), (3.8), and 1 = 7, depends on n satisfying

(3.13) v/ =0(1).

Define the SIML estimator of the realized volatility of X (¢) with m,, =n® (0 < a <
0.4) by (2.12) with p = 1. We write the limiting random variable of the normalized
estimator /m, [ZA)I - EI] as ¥, when n — co. Then as n — 0 the distribution of
¥, is asymptotically (m,,n — 0o) equivalent to the limiting distributions given by

Theorem 2.1 Theorem 2.2 and Theorem 2.3 under their assumptions.
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We have imposed the condition (3.13) on 7, which means that itt is a parameter
with small size. This condition could be relaxed because the results of simulations
in Section 4 have suggested so. The SIML estimator has the asymptotic robust

property against a large number of the round-off-errors models.

3.4 Nonlinear Micro-market price Adjustment models

We shall generalize the linear price adjustment model in Section 3.1 and con-
sider nonlinear price adjustments models. As often discussed in the cases of financial
crises in the past several decades, there could be different mechanisms among the
up-ward phase of financial prices and the down-ward phase of financial prices. In
the context of micro-market models in financial economics, some economists have
tried to find econometric models involving transaction costs and micro-market struc-
tures. In many stock markets usually there are regulations on the maximum limits
of down-ward price movements within a day, for instance. One common approach in
financial econometrics has been to build statistical models with asymmetrical move-
ments of instantaneous volatility and covariance. The present approach is slightly
different from the standard one because we try to consider the micro-market price
adjustment processes directly. As an example of the discrete time series modeling
of the nonlinear price adjustment model of the security price, we take a non-linear

version of (3.2) with
(3.14) g(z) = g1zl(x > 0) + gozl(z < 0)

where g; (i = 1,2) are some constants and I(-) is the indicator function. This has
been called the SSAR (simultaneous switching autoregressive) model, whic have
been investigated by Sato and Kunitomo (1996) and Kunitomo and Sato (1999).
It is related to one of the threshold autoregressive models in the non-linear time
series analysis. A set of sufficient conditions for the geometric ergodicity of the

price process is given by
(315) g1>0,g2>0,(1—g1)(1—92)<1
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This condition has been discussed by Kunitomo and Sato (1999) in the context
of nonlinear time series analysis. If we set g; = go = ¢, then we have the linear
adjustment case and the geometrically ergodicity condition is given by 0 < g < 2,
which was assumed in Theorem 3.1.

More generally, we consider the model
(3.16) P(t}) = P(t]y) = g [X () = P(t]-)] + u(t ) ,

where u(t?) is an i.i.d. sequence of noise with £[u(t?)] = 0 and E[u(t?)?] = o2.
We set y; = P(t7) and x; = X ({') by using the notation in Section 2 and define a
sequence of martingale differences by

t

(3.17) AX() = X (1) — X(10,) = /t o4dB, .

From (3.15) and (3.16), let
(3.18) V(t}) = P(t7) = X (&) — u(t)
and w(t?) = —AX (") + u(t? ;). Then we have

(3.19) V(E) = V) +wt)) +g[-VE,) - wt)]

= g V() +w#)]

where ¢*(2) = 2 + g(—2), E[w(t?)] = 0, E[w(t?)?] < oo and E[V (7, )w(t?)] = 0.

Because the discrete time series V' (t) satisfies the stochastic difference equation
(3.19), it is a Markovian process. In order to have the desired result, we need a set
of sufficient conditions, which are some type of ergodic conditions. We summarize
our results under some additional conditions with the nonlinear price adjustments

and the proof will be given in Appendix A.

Theorem 3.3 : For the non-linear time series process V (¢7) satisfying (3.18) and

(3.19), we assume that there exist functions p;( - ) and ps( -,- ) such that

(3.20) Cov[V(t}), V(t])] = cipi(li — jl) ,

J
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where ¢; is a (positive) constant and Y_;2, p1(s) < oo and
(3.21) Cov [V(E)V (), V(EIWV (#5))] = eapalli = 1,17 = 7D

where ¢, is a (positive) constant and 2%/ _; pa(s, 5') < o0.

Define the SIML estimator of the realized volatility of P(t?') with m, = n® (0 <
« < 0.4) by (2.12) with p = 1. Then the asymptotic distribution of \/m,, [flm - Ex]
is asymptotically (as m,,n — 00) equivalent to the limiting distributions given by

Theorem 2.1 Theorem 2.2 and Theorem 2.3 under their assumptions.

In the above theorem we impose a set of sufficient conditions as (3.20) and (3.21),
which may be relaxed.

A simple example is the linear case when g(x) = ¢ x (c is a constant with
0 < ¢ < 2 and v; are weakly dependent process. It is straightforward to have (3.20)
and (3.21) in this case. The second example is the SSAR(1) model with (3.15). It
seems that we need more stringent conditions than (3.15) to have (3.20) and (3.21).
There can be a large number of non-linear models for X (') and P(¢}), and the

sufficient conditions for the desired results have been under further investigation.

4. Simulations

We have investigated the robust properties of the SIML estimator for the realized
variance based on a set of simulations and the number of replications is 1000. We
have taken 20,000, and we have chosen @ = 0.4 and § = 0.8. The details of the
simulation procedure are similar to the corresponding ones reported by Kunitomo
and Sato (2008a, b).

In our simulation we consider several cases when the observations are the sum
of signal and micro-market noise when p = 1. The the volatility function (2,(s) =

2

oz(s)) is given by

T

(4.1) o2(s) = o(0)? [ao +a1s + ass®|,
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where a; (1 = 0, 1,2) are constants and we have some restrictions such that o,(s)? >
0 for s € [0,1]. It is a typical time varying (but deterministic) case and the realized

variance X, = o2 is given by
1

(4.2) = / 0,(5)%ds = 0,(0)? [ag + -+ —] :
0

In this example we have taken several intra-day volatility patterns including the flat
(or constant) volatility, the monotone (decreasing or increasing) movements and the
U-shaped movements.

Among many Monte-Carlo simulations, we summarize our main results as Tables
of Appendix B. We have used several models in the form of (3.1) and each model

corresponds to

Model 1 hi(z,y,u) =y + g(x —y) +u (g : a constant) ,
Model 2 ho(z,y,u) =y + gy(z —y +u) (g,(-) is (3.8)),
Model 3 hs(z,y,u) =y + gy(z —y) +u (g,(-) is (3.8)) ,
— ify >0 : tant

Model 4 hy(z,y,u) =y +u+ g1 —y) iy =0 (g :aconstant)

g2(x —y) ify <0 (go: aconstant)
Model 5 hs(w,y,u) =y + g1+ g2 exp(—y]z — y|)] (x = y) (91,92 : constants) ,
Model 6 he(z,y,u) =y + g1 sin (g2(x — y)) (g1, g : constants) ,
Model 7 he(z,y,u) =y + hy 0 hy 0 hy(x,y,u) ,
respectively.

Model 1 is the standard model when ¢ = 1. When 0 < g < 2, Model 1 corre-
sponds to the linear model with the micro-market adjustment. Model 2 and Model
3 are the models with the round-off errors. Model 2 is the standard round-off model
and Model 3 has a more complicated nonlinearity. Model 4 and Model 5 are the
SSAR model and the exponential AR model, which have been known as nonlin-
ear (discrete) time series models. Model 6 is an artificial nonlinear model with a
trigonometric function. Model 7 is a combination of three nonlinear models, which

corresponds to the most complicated nonlinearity in our examples.
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For a comparison we have calculated the historical volatility (HI) estimates and
the Realized Kernel (RK) estimates, which were developed by Bandorff-Nielsen et
al. (2008). It is because there is a natural question on the comparison of the
HI estimator, RK estimator and the SIML estimator, then we can compare three
methods in each tables. In order to make a fair comparison we have tried to follow the
recommendation by Bandorff-Nielsen et al. (2008) on the choice of kernel (Tukey-
Hanning) and the band width parameter H. One important issue in the RK method
has been to choose H, which depends on the noise variance and the instantaneous
variance and we can interpret as H = ¢y/02/[02/n] when p = 1. We have found
that the RK estimation gives a reasonable estimate if we had taken the reasonable
value of the key parameter H. In most cases the bias and the variance of the RK
estimator are larger than the corresponding values of the SIML estimator. Overall
the estimates of the SIML method are quite stable and robust against the possible
values of the variance ratio even in the nonlinear situations we have considered.

For Model-1, the estimates obtained by historical-volatility (H-vol) are badly-
biased, which have been known in the analysis of high frequency data. Actually,
the values of H-vol are badly-biased in all cases of our simulations. Both the SIML
method and the RK method give reasonable estimates and the variance of the RK
estimator is sometimes smaller than the SIML estimator. (See Figures B1-B4.) For
Model-1, however, the RK estimation sometimes gives biased-estimates while the
SIML estimation gives reasonable estimates. (See Figure B5.) For Model-2 and
Model-3, the RK estimation often gives biased-estimates while the SIML estimation
gives reasonable estimates. (See Figures B6-B8.) Contrary to our conjecture, for
Model-4 and Model-5 both the SIML and the RK estimations often give reasonable
results. Finally, for Model-6 and Model-7 the RL estimation sometimes give biased
estimates while the SIML estimation gives reasonable estimates.

By examining these results of our simulations we can conclude that we can esti-
mate both the realized volatility of the hidden martingale part. It may be surprising
to find that the SIML method gives reasonable estimates even when we have non-

linear transformations of the original unobservable security (intrinsic) values. We
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have conducted a number of further simulations, but the results are quite similar as

we have reported in this section.

5. Conclusions

In this paper, we have shown that the Separating Information Maximum Likeli-
hood (SIML) estimator has the asymptotic robustness in the sense that it is consis-
tent and it has the asymptotic normality under a fairly general conditions even when
the standard conditions are not satisfied. They include not only the cases when the
micro-market noises are possibly autocorrelated and they are endogenously corre-
lated with the underlying continuous signal process, but also the cases when the
micro-market structure has the nonlinear adjustments and the round-off errors un-
der a set of reasonable assumptions. The micro-market factors in actual financial
markets are common in the sense that we have the minimum price change and the
minimum order size rules; we often observe the bid-ask differences in stock markets,
for instance. Therefore the robustness of the estimation methods of the realized
volatility and covariance has been quite important. By conducting large number
of simulations, we have confirmed that the SIML estimator has reasonable robust
properties in finite samples even in these non-standard situations.

As a concluding remark, we should stress on the fact that the SIML estimator
is very simple and it can be practically used not only for the realized volatility but
also the realized covariance and the hedging coefficients from the multivariate high
frequency financial series. Some applications on the analysis of stock-index futures

market have been reported in Kunitomo and Sato (2008b, 2011) as illustrations.
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APPENDIX A : Mathematical Derivations of Theorems

In Appendix A, we give some details of the proofs of Theorem 3.1, Theorem 3.2 and
Theorem 3.3 in Section 3. Since Theorem 3.3 essentially contains Theorem 3.1, we
shall give the proof of Theorem 3.3. (The only difference is the effects of additional

terms which are smaller order than O,(1).)

The proof of Theorem 3.3

(Part-I) We shall investigate the asymptotic properties of the SIML estimator in
two steps. The first step is to investigate the conditions that the measurment errors
are stochastically negligible.

Consider the case of p = ¢ =1 and define v; = V(t') (i =1,---,n) by (3.18). Then
we can represent y; = x; + v;, where y; = P(t7),x; = X (t?) and v; = V(t7'). We
set u(t?) = 0 in (3.18) and ¥1/2(s) = o, for the resulting simplicity. We write the

returns in (¢;_1,%;] as
ti

(Al) i =X; —T;q :/ Usst (221,,n)
ti—1

with0 =ty <t; <---<t,=1land t;—t; 1 =1/n (i=1,---,n). We note that
the (instantaneous) volatility function ¢ (0 < s < 1) and the realized volatility

Y, = [, 02ds can be stochastic.

Let zz(,lL) and zz(z) (t=1,---,n) be the i-th elements of
(A.2) z) = h,'*P, C ' (x, — yo) , 22 = h,'?P,C, 'v,,

respectively, where x, = (z;), v, = (v;) and z, = (z4,) are n X 1 vectors with
M, @

Zin = Zin in -

Then by following Kunitomo and Sato (2010), we shall use the arguments devel-
oped for investigating the effects of the (possibly) autocorrelated noise term on the
asymptotic distribution of ix — Y, and X, = fol o2ds. We shall use the decomposi-
tion

(A3) Vil S0 = 5] = i [i S, zz]

Mn 5
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1 T
£ (2)2
\/WTnkX::l [an ]

I &A1 @2 (2)2 I &Erm. e
+— £ . e
e kgl [an [an ]] s kgl [an 2k ]

Then we shall investigate the conditions that three terms except the first one of

1 2
= Jm, [— ZZISL)Z — Ex] +
m

n =1

(A.3) are 0,(1). It is because we could estimate the realized volatility consistently
as if there were no noise terms in this situation.

Let b, = e, P, C;! = (by;) and e, = (0,---,1,0,--+) be an n x 1 vector. We
write z,(jl) = Y71 bijvy; and notice that 37, by by ; = §(k, k")ay,. Also we shall use
the notation that K; (i > 1) are some positive constants.

First by using the condition (3.20) and the Cauchy-Schwartz inequality, we have

(A4) 5[21(53]2 = E[Z kaUZZbk]U]]
i=1 j=1

IN

> cipi(s)D bribr,ii]
s=0 i=1

S leakna

provided that £(v?) are bounded and we use the notation by; = 0 (j < 0). By using
(2.9) and the relation sinz = x — (1/6)z® + (1/120)x° + o(z7),

1 2= 1 mn 2k — 1
A5 — L= —9 1—
A5 -Se = o 1-cs(r )
: 2mn
_n lgmn ~ %]
Mo, Sin 75
n lg () - %(ﬁ,ﬁﬁ)‘”’]
~ mp s 1 s 3
my (2n+1) - E(2n+1)
2
m
= o
()
Then the second term of (A.3) becomes
I & @ 1 & my/?
(A.6) L SRl < K 3 = (2
Mn .= VM .= n
if 0 <a<0.4.
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For the fourth term of (A.3),

2
1 & 1 &
M B
1 & "
(A?) — E Z [2 Z S]kS]'k'g(rJ ]| HllIl]] )Zl(ch)Z]E;?ZL

k,k':l j]'*l

= — 5[2233133 E(r3| Fj- 1) ,(62)n-|
" kK =1 [ J

< K€ |(su 02)g(ﬁ+1) L % Upeny [0

> 2 USSEI s n 92 4 mnkk,ZI kn k' ,n

IN
=
(]
)
4

In the above evaluation we have used the relation

t; 9 1
/ o,ds < —
ti—1 n

sup 032
0<s<1

and

|Zsjksj,k'| < [Z S?k] =n/2+1/4 forany k > 1.
— =

Hence we need the condition 0 < a < 1/3. When o, = 0,, i.e., the instantaneous
volatility function is constant, (A.7) becomes O(m?2 /n), which is satisfied if 0 < a <
0.4.

For the third term of (A.3), we need to consider the variance of

AP = EEP = Y bgby s [Uﬂ’,j' - 5(%‘%')]

74 =1

and we need to evaluate the expectation of [z,(ﬁlp — 5[2,(22]] [zl(j)z — E[ZI(;)Z]] . By
using (3.21) and we utilize the fact that

(A8) ST bbby by gpe(li— i | = 5]) ~ K3 X agnay , -

ii'=14,'=1
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Then by collecting each terms, we obtain

1 & 2)2 (2)2 1
(A.9) El—=2 (" = €2 < — Y amay,
VITn =1 Mn g k=1
1 mi’b 9
= O x (22
5
mn
- o™z

since Yy apn, = O(m3 /n).
Thus the third term of (A.2) is negligible if 0 < o < 0.4.
(Part-IT) The remaining task is to prove the asymptotic normality of the first term

of (A.3), that is,
1 &
(A.10) NS [m_ P zml

n k=1
because it is of the order O,(1). The proof of the asymptotic normality of (A.10) is
lengthy, but quite similar to the one given in Kunitomo and Sato (2010) and thus
it is omitted here. This completes the proof of Theorem 3.3. Q.E.D.

The proof of Theorem 3.2 : The most parts of the proof are very similar to
the corresponding ones in the proof of Theorem 3.3. We write y; = z; + v;,v; =
w; +w; (i =1,---,n), where |w;| < n,. Then we need to check that the effects of
a sequence of random variables w; (i = 1,---,n) are negligible under the additional
assumption (3.13) on the threshold parameter 1, (> 0).

We shall illustrate the underlying arguments. From (A.3) and (A.4), we notice
that

(A.11) [Z,SQ]Q = libm(uﬁwi)r

=1
n 2 n n n 2
1=1 1=1 1=1 1=1

By using the Cauchy-Swartz inequality, under (3.13) we have

2
< 2
= nn,agy -

(A.12) LZ: briw;
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Then we can find a positive constant such that

n 2
(A.13) & [ZIEZ)]Z = [Z bri(ui +w;)| < Kiapn [1 + 7771\/5]2

=1

By using the similar arguments to other terms in the decomposition of (A.3) as

(A.11), we can apply the same arguments as the proof of Theorem 3.3. Then we

have the desired result in Theorem 3.2. Q.E.D.
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APPENDIX B : TABLES and FIGURES

In Tables the variances (02) are calculated by the SIML estimation method while H-vol and

RK are calculated by the historical volatility estimation and the realized kernel estimation
methods, respectively. The true-val means the true parameter value in simulations and
mean, SD and MSE correspond to the sample mean, the sample standard deviation and

the sample mean squared error of each estimator, respectively.

B-1 : Estimation of Realized Volatility (Model-1)
(ap = 1,a1 = 0,a3 = 0;02 = 1.00E — 04,9 = 0.2)

n=20000 o2 H-vol RK

T

true-val | 1.00E+00 1.00E+400 1.00E4-00
mean 1.01IE+00 2.33E+00 1.04E+00
SD 1.97E-01  2.32E-02  6.58E-02
MSE 3.89E-02 1.78E+00 6.00E-03

B-2 : Estimation of Realized Volatility (Model-1)
(ap = 1,a1 = 0,a3 = 0;02 = 1.00E + 00,9 = 0.2)

n=20000 o2 H-vol RK

true-val | 1.00E4+00 1.00E+00 1.00E-+00
mean 9.96E-01  1.11E-01  9.71E-01
SD 1.93E-01  2.35E-03  6.30E-02
MSE 3.74E-02  7.90E-01  4.80E-03

B-3 : Estimation of Realized Volatility (Model-1)
(ap = 1,a1 = 0,a3 = 0;02 = 1.00E + 00,9 = 1.5)

n=20000 o2 H-vol RK

T

true-val | 1.00E+00 1.00E+00 1.00E4-00
mean 1.00E+00 3.00E+00 1.01E+00
SD 1.94E-01 4.03E-02  6.55E-02
MSE 3.78E-02  4.00E+00 4.34E-03
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B-4 : Estimation of Realized Volatility (Model-1)

(ap = 1,a1 = 0,a3 = 0;02 = 1.00E — 05,9 = 1.0)

2

n=20000 o H-vol RK
true-val | 1.00E4+-00 1.00E4+00 1.00E+00
mean 9.88E-01 1.40E4+00 9.97E-01
SD 1.99E-01  1.40E-02  6.53E-02
MSE 3.97E-02  1.60E-01  4.27E-03

B-5 : Estimation of Realized Volatility (Model-1)

(ap = 1,a1 = 0,a3 = 0;02 = 1.00E — 06,9 = 0.01)

2

n=20000 oy H-vol RK
true-val | 1.00E4-00 1.00E4-00 1.00E+00
mean 8.40E-01  2.51E-02  2.48E-01
SD 1.66E-01  5.41E-04  2.76E-02
MSE 5.31E-02  9.50E-01  5.66E-01

B-6 : Estimation of Realized Volatility (Model-2)
(ap =T,a1 = —12,a3 = 6;02 = 2.00E — 02,1 = 0.5)

2

n=20000 (o H-vol RK

true-val | 4.50E+01 4.50E+01 4.50E+4-01
mean 4.60E+01 1.37TE+02 5.36E+01
SD 1.0SE+01 6.19E+00 3.65E+00
MSE 1.L11E+02 8.46E+03 8.68E+01

B-7 : Estimation of Realized Volatility (Model-3)
(a0 =T7,a1 = —12,a3 = 6;02 = 1.00E — 02, = 0.5)

2

n=20000 o H-vol RK

true-val | 4.50E4+01 4.50E4+01 4.50E+401
mean 4.54E+01 3.95E+02 6.19E+01
SD 1.05E+01  6.69E+00 4.07E+00
MSE 1.10E402 1.22E405 3.02E4-02
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B-8 : Estimation of Realized Volatility (Model-3)
(ap = 1,a1 = 0,a3 = 0;02 = 1.00E + 00,7 = 0.005)

n=20000 o2 H-vol RK

true-val | 1.00E400 1.00E4+00 1.00E400
mean 1.00E+00 6.85E-01  9.97E-01
SD 1.94E-01  8.66E-03  6.21E-02
MSE 3.77E-02  9.92E-02  3.87E-03

B-9 : Estimation of Realized Volatility (Model-4)
(ao =1,a1 = 0,as = 0;02 = 1.00E + 00,9, = 0.2,g2 = 5)

n=20000 o2 H-vol RK

T

true-val | 1.00E+00 1.00E+400 1.00E4-00
mean 1.01IE+00 2.22E+00 1.01E+00
SD 1.93E-01  6.46E-02  6.25E-02
MSE 3.71E-02 1.49E+00 3.93E-03

B-10 : Estimation of Realized Volatility (Model-4)
(ap = 1,a; = 0,as = 0;02 = 1.00E — 03,9, = 0.2,92 = 5)

n=20000 o2 H-vol RK

x

true-val | 1.00E400 1.00E4+00 1.00E400
mean 1.02E+00 6.65E+01 1.11E-+00
SD 1.94E-01 1.66E4+00 7.46E-02
MSE 3.79E-02 4.30E+03 1.85E-02

B-11 : Estimation of Realized Volatility (Model-5)
(ao = 1,a1 = 0,as = 0;02 = 1.00E + 00, g; = 1.9, = —1.7,7 = 10000)

n=20000 o? H-vol RK

true-val | 1.00E4+00 1.00E4+00 1.00E-+00
mean 9.99E-01 6.39E400 1.00E+400
SD 1.92E-01  3.66E-01  6.53E-02
MSE 3.68E-02 2.91E+01 4.26E-03
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B-12 : Estimation of Realized Volatility (Model-6)
(a0 = 1,a1 = 0,a2 = 0;02 = 1.00E + 00, sin(z * 0.1))

n=20000 o2 H-vol RK

true-val | 1.00E4+00 1.00E+00 1.00E-+00
mean 1.0O0E4+00 5.26E-02  8.32E-01
SD 2.14E-01  2.23E-03  6.79E-02
MSE 4.59E-02  8.97E-01  3.27E-02

B-13 : Estimation of Realized Volatility (Model-6)
(ap = 1,a1 = 0,a3 = 0;02 = 1.00E + 00,0.01 * sin(z * 100))

n=20000 o2 H-vol RK

true-val | 1.00E400 1.00E+00 1.00E+00
mean 7.67E-01  4.49BE-01  7.75E-01
SD 1.79E-01  3.78E-03  6.05E-02
MSE 8.64E-02  3.03E-01  5.41E-02

B-14 : Estimation of Realized Volatility (Model-7)

(a() = 1,a1 :0,02 :O;O'Z

= 1.00E — 04,97 = 0.2,92 = 5;9 = 0.01;7 = 0.01)

n=20000 o? H-vol RK

true-val | 1.00E4+00 1.00E+00 1.00E+00
mean 1.18E+00 3.62E+00 1.81E+00
SD 2.30E-01  1.04E-01  1.16E-01
MSE 8.36E-02  6.85E+00  6.69E-01

In Figures 3.1 and 3.2 P and @ stand for the price and the quantity, respectively. D and S

are the demand curve and supply curve, respectively. i in Table 3.2 denotes the minimum

tick size and @Q* is the quantity traded in Figure 3.2.
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