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Abstract

This paper proposes a trading strategy that dynamically rebalances
static super-replicating portfolios, which is very useful for both invest-
ment and hedging strategies. In order to investigate general properties of
the strategy, we derive the Doob-Meyer decomposition for the value pro-
cess without any specifications of models under the continuous processes
of the underlying variables. In particular, we find that the increasing
part of the decomposition characterizes the performance of the strategy.
Also, we obtain more concrete features for cross-currency and one-touch
options based on our general framework. Moreover, numerical examples
for cross-currency options demonstrate the effectiveness of our strategy
for investment and hedging.
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1 Introduction

This paper introduces a trading strategy that dynamically rebalances
static super-replicating portfolios, which is very attractive for both invest-
ment and hedging. Specifically, we derive the Doob-Meyer decomposition
for the value process of this strategy without any specifications of models
under the continuous processes of the underlying variables: the increas-
ing part of the decomposition is a key element since it characterizes the
performance of the strategy.

Super-replications have been more attractive since 2007 after the fi-
nancial crisis, because they provide a protection against substantial losses.
In particular, thanks to the robustness of their model-independent proper-
ties, they put a rigid floor on the maximum loss whatever the subsequent
paths of the underlying prices.

The problem of finding the cheapest super-replication has first been
introduced by El Karoui and Quenez [4] for the case of dynamic trading
strategies. Subsequently, various types of super-replicating strategies have
been proposed. Among them, several model-independent and static/semi-
static super-replications have been investigated by Chung and Wang [2],
Neuberger and Hodges [6] and Tsuzuki [7]. Here, static replication is a
method of replicating a derivative with portfolio whose composition does
not change until the maturity of the derivative and semi-static one is
a method of replication by trading no more than once after inception.
While they are robust, these strategies have a serious drawback that the
probability of suffering the maximum loss is extremely high.

In order to overcome this drawback, we propose a dynamically rebal-
ancing strategy of the cheapest super-replication. As an intuitive expla-
nation for the feature of this strategy, consider static super-replications
whose portfolios are derived as the cheapest among some family of super-
replicating portfolios. First, the super-replicating portfolio is constructed
as the cheapest one. After the market conditions have changed, the origi-
nal portfolio is no longer the cheapest and another one becomes the cheap-
est. By liquidating the original one and constructing the new cheapest
one, an amount of cash is withdrawn from the position:this amount should
be positive because the latter is cheaper than the former. The strategy
continues this operation until the maturity. Then, thanks to the accumu-
lation of these positive cash flows, the probability of the maximum loss is
reduced. We remark that Neuberger and Hodges [6] examines a numerical
example of this type of strategy for barrier options. (Dupire [3] called it
“roll-down”.)

This paper analyzes properties of the strategy without assuming any
models under the continuous processes of the underlying variables. In
particular, to the best of our knowledge, it is the first work that de-
rives the Doob-Meyer decomposition for the value process, which is a
super-martingale process because it is defined as an infimum of a certain
family of portfolios. Moreover, we give a financial interpretation to the
decomposition and obtain general properties of the strategy through the
increasing part of the decomposition;the increasing part is practically im-
portant because it characterizes the performance of the strategy. More
concrete features become known by applications of our results to specific
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derivatives such as cross-currency and one-touch options under some ad-
ditional assumptions that are satisfied for usual cases. Further, numerical
examples for cross-currency options demonstrate the effectiveness of our
strategy for both investment and hedging.

The organization of this paper is as follows: Section 2 states assump-
tions and notations. Section 3 is devoted to our main theorem on the
Doob-Meyer decomposition. Section 4 applies our result to cross-currency
and one-touch options. Numerical examples for cross-currency options
are demonstrated in Section 5. The last section gives concluding remarks.
Appendix presents analytical results for cross-currency options under the
Black-Scholes model.

2 Assumptions and Notations

We consider the problem of hedging a derivative by liquid instruments
such as bonds, risky assets as well as plain-vanilla options on those assets
in a frictionless and no-arbitrage market, which is defined on a filtered
probability space (Ω,F , {Ft}t∈[0,T∗], Q) for some arbitrary time horizon
T ∗ > 0. The no-arbitrage condition ensures the existence of a risk-neutral
measure Q such that the instantaneous expected rate of return on every
asset is equal to the instantaneous interest rate. For sake of simplicity,
the interest rate and the dividend yields are assumed to be zero.

Let OX be a domain of RN and X : Ω × [0, T ∗] −→ OX be an N -
dimensional {Ft}-adapted continuous process which represents all the un-
derlying random variables such as asset prices and their volatilities:

Xt := X0 + At + Mt (2.1)

X0 := x, (2.2)

where At is an N -dimensional finite variation process, Mt is an N -dimensional
continuous local martingale and x ∈ OX . The i-th component of the each
vector is expressed by X

(i)
t , A

(i)
t or M

(i)
t .

Let Y : Ω× [0, T ∗] −→ RD be an D-dimensional process which denotes
time-t prices of all tradable securities, which is {Ft}-adapted and contin-
uous. Note that Y is a local martingale under our assumption that the
interest rate is zero. We define a trading strategy φ by an D-dimensional
{Ft}-adapted process φ : Ω × [0, T ] −→ RD, whose i-th component is the
number of the security Y (i) held by the strategy, where T is the end of a
trading period. In particular, a trading strategy φ is a semi-static strategy
if and only if φ is constant on [0, τ) and (τ, T ] for some stopping time τ
and a strategy is static if and only if τ = T .

Let Y ∗ : Ω × [0, T ∗] −→ R be a price process of the derivative to be
hedged, which is assumed to be {Ft}-adapted. Y ∗

t may not be measurable
with respect to the σ-algebra generated by Yt for any t ∈ [0, T ∗], which
means that the derivative Y ∗ can not be replicated by the tradable secu-
rities. Then, we consider the strategy that super-replicates the derivative.
Here, a super-replicating strategy of Y ∗

t is a trading strategy such that
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for any t ∈ [0, T ∗],

Y ∗
t ≤

D
X

n=1

φ
(n)
t Y

(n)
t . (2.3)

In particular, suppose that φ is a semi-static super-replicating strategy
for a stopping time τ . Then, for t ∈ [0, τ)

Y ∗
t ≤

D
X

n=1

φ
(n)
0 Y

(n)
t . (2.4)

Assume that there exists a family of static strategies that super-replicate
the derivative Y ∗. Let us denote the time-t prices of static portfolios in
the family by {H(t, x, K)}K∈OK , where H is assumed to depend on a
parameter K ∈ OK with some domain OK in R as well as on the time
parameter t and market variables x ∈ OX .

Remark 1. Some derivatives can be super-replicated by portfolios con-
sisting of plain-vanilla options whose strike prices are arbitrary. In these
cases, the parameter K of {H(t, x, K)}K∈OK corresponds to the strike
price. We will look at those examples in Section 4.

3 Rebalancing Super-Replications

This section investigates the strategy which dynamically rebalances super-
replications.

The strategy is explained as follows. First, the super-replicating port-
folio is constructed at time t = 0 as the cheapest one by solving the op-
timization problem (3.1) below. Then, rebalancing the super-replicating
portfolio is continuously executed until the maturity T . This is carried out
by solving the optimization problem (3.1) under the market conditions at
time t. It is noteworthy that the strategy is not self-financed because an
amount of cash is extracted from the position until the maturity T . The
performance of the strategy depends on how much these cash flows are.
In order to investigate them, we derive the Doob-Meyer decomposition of
the process {H∗

t }t∈[0,T ], which is the value process of the strategy.
Some assumptions and lemmas are necessary for obtaining the decom-

position.

Assumption 1. H(t, x, K) is assumed to have the unique infimum value
with respect to K for all t ∈ [0, T ) and x ∈ OX . Let H∗(t, x) be the
infimum value and K∗(t, x) be a point where the infimum is attained:

H∗(t, x) := inf
K>0

H(t, x, K)

= H(t, x, K∗(t, x)). (3.1)

Hereafter, the following notations will be used for simplicity: Ht(K) :=
H(t, Xt, K), K∗

t := K∗(t, Xt) and so on.

Assumption 2. H(t, x, ·) and K∗(t, x) are sufficiently smooth with re-
spect to t and x.
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The process Ht(K) for each K ∈ OK is the price process of the static
position of a super-replicating portfolio. Under the assumption that the
interest rate is assumed to be zero, the process is a local martingale.

Lemma 1. Suppose t > 0 and K ∈ OK . Then

Z t

0

∂H

∂t
(s, Xs, K)ds +

N
X

i=1

Z t

0

∂H

∂xi
(s, Xs, K)dA(i)

s

+
X

i,j<N

Z t

0

1

2

∂2H

∂xi∂xj
(s, Xs, K)d

D

M (i), M (j)
E

s
= 0 (3.2)

and

Ht(K) = H0(K) +
N
X

i=1

Z t

0

∂H

∂xi
(s, Xs, K)dM (i)

s . (3.3)

Proof. By Ito’s formula, we have for ∀t > s > 0, ∀K ∈ OK

Ht(K) = Hs(K) +

Z t

s

∂H

∂t
(u, Xu, K)du

+

N
X

i=1

Z t

s

∂H

∂xi
(u, Xu, K)dX(i)

u

+
X

i,j<N

Z t

s

1

2

∂2H

∂xi∂xj
(u, Xu, K)d

D

M (i), M (j)
E

u
. (3.4)

Since the process {Ht(K)}t∈[0,T ] is a local martingale, Eq.(3.2) and Eq.(3.3)
are obtained.

Theorem 1 depends on the following assumption, which is satisfied
in usual cases where the optimization problem (3.1) admits the unique
solution.

Assumption 3. H(t, x, K) is twice continuously differentiable in the
neighborhood of K∗(t, x) with respect to K for all t ∈ [0, T ) and x ∈ OX .
Moreover,

∂H

∂K
(t, x, K∗(t, x)) = 0 (3.5)

∂2H

∂K2
(t, x, K∗(t, x)) > 0. (3.6)

Theorem 1. Suppose Assumption 3. Then, the process {H∗
t }t∈[0,T ] is a

super-martingale and its Doob-Meyer decomposition is given by

H∗
t = H∗

0 − A∗
t + M∗

t , (3.7)

where the process {A∗
t }t∈[0,T ] is increasing:

A∗
t =

Z t

0

∂2H

∂K2
(s, Xs, K

∗
s ) d 〈K∗〉s , (3.8)
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and the process {M∗
t }t∈[0,T ] is a martingale:

M∗
t =

N
X

i=1

Z t

0

∂H

∂xi
(s, Xs, K

∗
s )dM (i)

s . (3.9)

Proof. By Assumption 3, we have for any t ∈ [0, T ], x ∈ OX ,

∂H

∂K
(t, x, K∗(t, x))

∂K∗

∂t
(t, x) = 0 (3.10)

∂H

∂K
(t, x, K∗(t, x))

∂K∗

∂xi
(t, x) = 0 (3.11)

and

∂

∂xi

„

∂H

∂K
(t, x, K∗(t, x))

«

=
∂2H

∂xi∂K
(t, x, K∗(t, x)) +

∂2H

∂K2
(t, x, K∗(t, x))

∂K∗

∂xi
(t, x)

= 0. (3.12)

Ito’s formula implies that

H∗
t = H∗

0 +

Z t

0

∂H∗

∂t
(s, Xs)ds

+

N
X

i=1

Z t

0

∂H∗

∂xi
(s, Xs)dX(i)

s +
X

i,j<N

Z t

0

1

2

∂2H∗

∂xi∂xj
(s, Xs)d

D

X(i), X(j)
E

s

= H∗
0 +

Z t

0

„

∂H

∂t
(s, Xs, K

∗
s ) +

∂H

∂K
(s, Xs, K

∗
s )

∂K∗

∂t
(s, Xs)

«

ds

+

N
X

i=1

Z t

0

„

∂H

∂xi
(s, Xs, K

∗
s ) +

∂H

∂K
(s, Xs, K

∗
s )

∂K∗

∂xi
(s, Xs)

«

dX(i)
s

+
X

i,j<N

Z t

0

1

2

„

∂2H

∂xi∂xj
(·, K∗

s ) +
∂2H

∂xi∂K
(·, K∗

s )
∂K∗

∂xj
(·)
«

(s, Xs)d
D

X(i), X(j)
E

s

= H∗
0 +

N
X

i=1

Z t

0

∂H

∂xi
(s, Xs, K

∗
s )dM (i)

s

+
X

i,j<N

Z t

0

1

2

∂2H

∂xi∂K
(s, Xs, K

∗
s )

∂K∗

∂xj
(s, Xs)d

D

X(i), X(j)
E

s
, (3.13)

where we have used Lemma 1.
Let the first integral be defined as M∗

t and the last one be defined as
−A∗

t . Then, we have

A∗
t = −

X

i,j<N

Z t

0

1

2

∂2H

∂xi∂K
(s, Xs, K

∗
s )

∂K∗

∂xj
(s, Xs)d

D

X(i), X(j)
E

s

=
X

i,j<N

1

2

Z t

0

∂2H

∂K2
(s, Xs, K

∗
s )

∂K∗

∂xi
(s, Xs)

∂K∗

∂xj
(s, Xs)d

D

X(i), X(j)
E

s

=
1

2

Z t

0

∂2H

∂K2
(s, Xs, K

∗
s ) d

*

N
X

i=1

Z ·

0

∂K∗

∂xi
dX(i)

+

s

. (3.14)
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It is found that the process {M∗
t }t∈[0,T ] is a martingale and {A∗

t }t∈[0,T ] is
increasing by Assumption 3.

Remark 2. In case where H∗(t, x) takes the infimum value at a boundary
point, Eq.(3.5) of Assumption 3 may not hold. Nevertheless, Theorem
1 holds under an assumption that K∗(t, x) is constant on the subset of
[0, T ) × OX that H∗(t, x) takes the infimum value at a boundary point,
because Eq.(3.10) and (3.11) hold and A∗

t = 0 on the set.

A financial interpretation of Theorem 1 is as follows. The variation of
the martingale part M is approximated by the difference between the time-
t value and the time-s value of the time-s optimal portfolio by Eq.(3.3)
for all s < t, which is a variation of the price of a portfolio held at time s:

M∗
t − M∗

s =

N
X

i=1

Z t

s

∂H

∂xi
(u, Xu, K∗

u)dM (i)
u

≈
N
X

i=1

∂H

∂xi
(s, Xs, K

∗
s )∆M (i)

s

≈ Ht(K
∗
s ) − Hs(K

∗
s ), (3.15)

where ∆M
(i)
s := M

(i)
t − M

(i)
s and we have used the approximation

Ht(K) − Hs(K) ≈
N
X

i=1

∂H

∂xi
(s, Xs, K)∆M (i)

s (3.16)

with K = K∗
s .

Then, we obtain

A∗
t − A∗

s ≈ Ht(K
∗
t ) − Ht(K

∗
s ), (3.17)

which is the difference between the time-t value of the time-t optimal
portfolio and that of the time-s optimal portfolio. Hence, the increas-
ing part A is regarded as the accumulation of cash flows generated by
each rebalancing. Consequently, the value process for a trader shorting
the derivative with the optimally rebalancing super-replication strategy is
given by

H∗
t + A∗

t − Y ∗
t = H∗

0 + M∗
t − Y ∗

t . (3.18)

This implies that the larger is A∗
t , the more profitable the strategy is.

A general property is derived through this analysis. Eq.(3.8) shows
that the time-t cash flow is a change in the quadratic variation of the
optimal parameter K∗ weighted by the second-order derivative of H with
respect to the parameter K at K = K∗. The former represents the extent
of the fluctuation of the optimal parameter K∗ while the latter expresses
the extent of convexity of the function H(t, x, ·) at an optimal point K∗.
For further detailed properties, we study some specific options in the next
section.
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4 Applications

This section applies our result to cross-currency and one-touch options,
where we assume conditions normally satisfied for plain-vanilla European
options;for instance, the prices of these options are sufficiently smooth
with respect to every parameter and the delta and the vega 1 of call
options are positive.

4.1 Cross-Currency Options

This subsection applies Theorem 1 to cross-currency European options.
Let a currency exchange rate X

(i)
T be the price of the unit amount of

Currency i in terms of a base currency such as USD(U.S. dollar). Consider
a cross-currency rate representing the price of the unit amount of Currency
1 in terms of Currency 2. Then, the payoff of a call option on the cross-
currency with strike 1 and maturity T (in terms of Currency 2) is given
by

(X
(1)
T /X

(2)
T − 1)+ = (1/X

(2)
T )(X

(1)
T − X

(2)
T )+.

Hence, for pricing this option we need to evaluate an exchange option(see

Margrabe [5]) whose payoff is (X
(1)
T − X

(2)
T )+.

Next, note that the following super-/sub-replication is a well-known
strategy.

Lemma 2. For all K > 0, the payoff of an exchange option with maturity
T must satisfy the following inequalities:

(X
(1)
T − X

(2)
T )+ ≤ (X

(1)
T − K)+ + (K − X

(2)
T )+, (4.1)

(X
(1)
T − X

(2)
T )+ ≥ max{(X(1)

T − K)+ − (X
(2)
T − K)+,

−(K − X
(1)
T )+ + (K − X

(2)
T )+}. (4.2)

Proof. Suppose z1, z2, k ∈ R. Then

(z1 − z2)+ = ((z1 − k) + (k − z2))+
≤ (z1 − k)+ + (k − z2)+. (4.3)

by Jensen’s inequality. If we substitute z1 = X
(1)
T , z2 = X

(2)
T , k = K in

Inequality (4.3), then Inequality (4.1) is derived. If we substitute z1 =

X
(1)
T , z2 = K, k = X

(2)
T and z1 = K, z2 = X

(2)
T , k = X

(1)
T in Inequality

(4.3), then Inequality (4.2) is derived.

Let C(i)(t, x, K) and P (i)(t, x, K) be the time-t prices of call and put
options on the exchange rate i(i = 1, 2) respectively, where x ∈ OX is
a N -dimensional vector consisting of all parameters relevant for option
prices, such as the underlying exchange rates and their volatilities. Es-
pecially, we assume that the first component x1 and the second one x2

stand for the underlying exchange rates. The value process of the super-
/sub-replicating portfolio which corresponds to H in the previous section
is given as follows:

1The delta(vega) is the derivative with respect to the price(volatility) of the underlying
asset price.
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Definition 1. Let G and L be the value of super-/sub-replicating portfo-
lios with the strike K:

G(t, x, K) := C(1)(t, x, K) + P (2)(t, x, K) (4.4)

L(t, x, K) := −max{LC(t, x, K), LP (t, x, K)}, (4.5)

where

LC(t, x, K) := C(1)(t, x, K) − C(2)(t, x, K), (4.6)

LP (t, x, K) := −P (1)(t, x, K) + P (2)(t, x, K). (4.7)

In addition, let KG and KL be the optimal strike prices for super-/sub-
replication respectively.

Remark 3. The optimal strike prices KG and KL become the same as
those in Chung and Wang [2].

We see if Assumption 3 is satisfied for these strategies. The optimal
super-replicating portfolio is always determined uniquely as in the fol-
lowing lemma. On the other hand, the optimal sub-replicating portfolio
is not always determined uniquely. We show a sufficient condition for
uniqueness under the Black-Scholes model(see Appendix A).

Lemma 3. Suppose H = G. Then, Assumptions 1 and 3 hold.

Proof. By differentiating G(t, x, K) with respect to K,

∂G

∂K
(t, x, K) =

∂C(1)

∂K
(t, x, K) +

∂P (2)

∂K
(t, x, K)

=
∂C(1)

∂K
(t, x, K) +

∂C(2)

∂K
(t, x, K) + 1 (4.8)

∂2G

∂K2
(t, x, K) =

∂2C(1)

∂K2
(t, x, K) +

∂2C(2)

∂K2
(t, x, K). (4.9)

The fact that ∂2C(i)

∂K2 (t, x, K) > 0 implies ∂2G
∂K2 (t, x, K) > 0. Since ∂G

∂K
(t, x, 0) =

−1 and ∂G
∂K

(t, x, +∞) = +1, G(t, x, K) has the infimum value at K which
satisfies ∂G

∂K
(t, x, K) = 0.

By investigating the property of K∗, it is found that K∗ depends on
the correlation of the two underlying exchange rates.

Proposition 1. Suppose Assumption 3 holds for sub-replication. Then
∂KG

s
∂x1

∂KG
s

∂x2
> 0 and

∂KL
s

∂x1

∂KL
s

∂x2
< 0.

Proof. By Assumption 3,

∂P (1)

∂K

“

t, x, KG(t, x)
”

+
∂P (2)

∂K

“

t, x, KG(t, x)
”

− 1 = 0 (4.10)

and

∂P (1)

∂K

“

t, x, KL(t, x)
”

=
∂P (2)

∂K

“

t, x, KL(t, x)
”

. (4.11)
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By differentiating these equations with respect to xi for i = 1, 2, we obtain

∂2G

∂K2

“

t, x, KG(t, x)
” ∂KG

∂xi
= − ∂2P (i)

∂K∂xi

“

t, x, KG(t, x)
”

(4.12)

and

∂2L̃

∂K2

“

t, x, KL(t, x)
” ∂KL

∂xi
= (−1)i+1 ∂2P (i)

∂K∂xi

“

t, x, KL(t, x)
”

, (4.13)

where L̃ = −LC or LP . ∂2P (i)

∂K∂xi
is negative because the probability that

the price at the maturity is less than any value goes down if a spot price
goes up, and vice versa. This leads to the proposition.

Remark 4. Proposition 1 shows that the integrand
∂K∗

s
∂x1

∂K∗
s

∂x2
of the last

term in the following approximation is positive for K∗ = KG and negative
for K∗ = KL:

〈K∗〉t ≈
Z t

0

„

∂K∗
s

∂x1

«2

d
D

X(1)
E

s
+

Z t

0

„

∂K∗
s

∂x2

«2

d
D

X(2)
E

s

+

Z t

0

∂K∗
s

∂x1

∂K∗
s

∂x2
d
D

X(1), X(2)
E

s
. (4.14)

This implies the following relations approximately hold:

(i) The quadratic variation of KG is positively correlated to the quadratic
covariation of X(1) and X(2).

(ii) The quadratic variation of KL is negatively correlated to the quadratic
covariation of X(1) and X(2).

Note that our strategy is useful for an investment in the correlation of the
two exchange rates.(See Section 5.1.)

4.2 One-Touch Options

We apply Theorem 1 to one-touch options. A one-touch option with
maturity T and a barrier level B ∈ R+ is an option which is worthless if
the barrier has not been hit, and pays one at the maturity if the barrier
has been hit. Let the event that the barrier has been hit be

A := {ω ∈ Ω |St /∈ I for some t ∈ [0, T )}, (4.15)

where I := [0, B] and St is the time-t price of the underlying asset with
S0 < B. Then, the payoff is 1A.

Brown et al. [1] and Neuberger and Hodges [6] introduced a model-
independent static super-replication under the assumption that the risk-
free interest rate and the dividend yield of the underlying asset are zero
and that the underlying asset process is continuous2. They consider the
following family of strategies parameterized by a strike price K ∈ [0, B)
for a short position of a one-touch option. The strategy consists of at
most two steps: the first step is to buy (B−K)−1 amounts of a European

2If the assumption fails, their results are weakened.
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call option with strike K at the beginning; the second step is to sell the
call option and buy (B − K)−1 amounts of a European put option with
strike K at the first hitting time. By the put-call parity, one amount of
cash is left after the operation at the first hitting time.

We apply our theorem to this strategy until the first hitting time.
Then, the value of the super-replicating portfolio is given by

H(t, x, K) =
C(t, x, K)

B − K
, (4.16)

where C(t, x, K) is the time-t price of a European call option and x ∈ OX

is a N -dimensional vector consisting of all parameters relevant for option
prices such as the underlying price S and its volatility σ.

Lemma 4. H(t, x, K) satisfies Assumption 1 and 3.

Proof. By differentiating with respect to K, we obtain

∂H

∂K
(t, x, K) =

g(t, x, K)

(B − K)2
(4.17)

and

∂2H

∂K2
(t, x, K) =

1

B − K

∂2C

∂K2
(t, x, K) +

2g(t, x, K)

(B − K)3
, (4.18)

where

g(t, x, K) :=
∂C

∂K
(t, x, K)(B − K) + C(t, x, K). (4.19)

∂H
∂K

= 0 has solutions by the fact that ∂H
∂K

(t, x, 0) = 1
B

(−1 + St
B

) < 0 and
limK→B

∂H
∂K

(t, x, K) = +∞. At these points, we have

∂2H

∂K2
(t, x, K) =

1

B − K

∂2C

∂K2
(t, x, K) > 0, (4.20)

which leads to the uniqueness of the solution.

Let us investigate the properties of the optimal strike K∗ which uniquely
satisfies ∂H/∂K = 0 in Eq.(4.17). The optimal strike K∗ has a graphical
interpretation(see Fig.(1)): (K∗, C(x, K∗)) is the point at which a line
through two points (B, 0) and (K∗, C(x, K∗)) is tangent to the function
C(x, K) .

We analyze how the optimal strike K∗ is affected by the underlying
price S and its volatility σ that are main factors for pricing the options.
We assume the following assumption which usually holds true.

Assumption 4. Suppose that g defined as Eq.(4.19) is strictly increasing
with respect to S and σ(some components of a N-dimensional vector x).

Remark 5. Assumption 4 usually holds true because it is expected that
the absolute variation of ∂C

∂K
with respect to S and σ respectively is smaller

than that of C.

Then, we obtain the following property of K∗.

Proposition 2. Suppose Assumption 4 holds. Then
∂K∗

s
∂S

∂K∗
s

∂σ
> 0.
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Figure 1: The optimal strike (B = 94)

Proof. Let the price of a European call option be C(α, K) with α = S or σ
for short, where we ignore other market parameters and K∗

α be the strike
price which gives the unique zero for the equation g(α, K) = 0. Then, we
have g(·, 0) = S − B < 0. Let us consider the sign of g(β, K∗

α) for β > α.
Assumption 4 implies

g(β, K∗
α) =

∂C

∂K
(β, K∗

α)(B − K∗
α) + C(β, K∗

α)

>
∂C

∂K
(α, K∗

α)(B − K∗
α) + C(α, K∗

α) = 0. (4.21)

Therefore, K∗
β must be uniquely in the interval (0, K∗

α) by the continuity
of g, which leads to the fact that K∗

α is strictly decreasing with respect to
α.

Remark 6. Proposition 2 shows that the integrand
∂K∗

s
∂S

∂K∗
s

∂σ
of the last

term in the following approximation is positive:

〈K∗〉t ≈
Z t

0

„

∂K∗
s

∂S

«2

d 〈S〉s +

Z t

0

„

∂K∗
s

∂σ

«2

d 〈σ〉s

+

Z t

0

∂K∗
s

∂S

∂K∗
s

∂σ
d 〈S, σ〉s . (4.22)

Hence, roughly speaking, the quadratic variation of K∗ is positively corre-
lated to the quadratic covariation of S and σ.

5 Numerical Examples

In this section, we implement two types of Monte Carlo simulation tests of
the dynamically rebalancing super-replication for cross-currency options:
the purpose of the first simulation is to confirm that it can be used as
an investment strategy on the correlation as stated in Remark 4, and
the second is intended to demonstrate the effectiveness of our strategy in
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hedging through comparing a hedging performance of our strategy with
those of other hedging strategies.

Consider a trading strategy where the dynamically rebalancing super-
replication is applied against shorting an ATM cross-currency option. For
example, let a currency exchange rate Sa

t (Sj
t ) represent a time-t price

of the unit amount of USD in terms of AUD(JPY)3. Consider a cross-
currency rate representing the price of the unit amount of AUD in terms
of JPY. Then, the payoff of a call option on the cross-currency with strike
spot ATM(Sj

0/Sa
0 ) and maturity T in terms of JPY is given by

 

Sj
T

Sa
T

− Sj
0

Sa
0

!

+

= Sj
T · 1

Sa
0

 

Sa
0

Sa
T

− Sj
0

Sj
T

!

+

(5.1)

In the following simulations, we normalize the processes of the exchange
rates so that Sa

0 = Sj
0 = 1.

5.1 Investment on Correlation

In order to focus on a correlation investment, we adopt a simple model
that is a correlated log-normal model with a constant correlation as in the
following assumption.

Assumption 5. The processes of the exchange rates Sj
t and Sa

t are as-
sumed to be correlated log-normal with constant volatilities and a constant
correlation:

dSj
t = σjSj

t dW j
t (5.2)

dSa
t = σaSa

t dW a
t , (5.3)

D

W j , W a
E

t
= ρt, (5.4)

where W j
t and W a

t are 1 dimensional Brownian motions and σj, σa and
ρ are constant.

Our simulation settings are listed in Table 1, where we have two values
of the correlation in order to see how the performance of the strategy
is affected by the correlation. We sell 100.0 units of a cross-currency
option at 14.14% implied volatility, which corresponds to ρ = −0.25 and
rabalance static portfolios every five days.

Table 1: Settings of the simulation

T Sj
0 Sa

0 σj σa ρ
30(days) 1.0 1.0 10.0(%) 10.0(%) 0.0 / -0.5

Fig.2 shows the result of the simulations in terms of JPY; it shows
histograms of the performance corresponding to the correlation values. It
is found that the higher is the correlation, the more profit is obtained,
which is consistent with Remark 4.

3AUD and JPY stand for Australian dollar and Japanese yen, respectively.
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5.2 Effectiveness as a Hedging Strategy

This subsection considers hedging as an application of the dynamically
rebalancing super-replication. Especially, hedging a short position by the
strategy seems attractive to risk-averse investors. The strategy has two
distinctive features: one is to avoid substantial losses and another is to
prevent the worst-case scenario which would often occur if rebalancing
would not be carried out.

In order to demonstrate those, a hedging performance of the strategy
is compared with those of two other hedging strategies; Black-Scholes
dynamic hedging and the static super-replication of Chung and Wang
[2], which is a static position introduced in Lemma 2. We implement a
simulation test where paths are generated by a realistic model, where the
volatilities of both exchange rates are stochastic. The following model is
used for generating paths of the simulation.

Assumption 6. The processes of the exchange rates Sj
t and Sa

t are as-
sumed to follow the model:

dSj
t = Sj

t σj
t dW j

t (5.5)

dSa
t = Sa

t σa
t dW a

t , (5.6)

where ζj
t := log σj

t and ζa
t := log σa

t follow

dζj
t = ξj(ηj − ζj

t )dt + θjdZj
t , (5.7)

dζa
t = ξa(ηa − ζa

t )dt + θadZa
t . (5.8)

(ξj , ηj , θj) and (ξa, ηa, θa) are constant and W j , W a, Zj and Za are 1-
dimensional Brownian motions with

d
D

W j , W a
E

= ρ, d
D

W j , Zj
E

= ρj , d 〈W a, Za〉 = ρa, (5.9)

where the other correlations are zero.

Our simulation settings are listed in Table 2. We sell 100.0 units
of a cross-currency option at 20.18% implied volatility that is computed
by σj

iv = 14.0%, σa
iv = 16.0% and ρ = 0.1. Then, we rebalance static

portfolios every five days while rebalancing the delta every day for Black-
Scholes hedging, where the delta is evaluated with 20.18% cross-currency
rate volatility. The implied volatilities are set to be flat with 14.0% and
16.0%.

Table 2: Settings of the simulation

T Sj
0 Sa

0 ρ σj
iv σa

iv

30(days) 1.0 1.0 0.1 14.0(%) 16.0(%)
σ∗

0 ξ∗ η∗ θ∗ ρ∗

j 9.50(%) 347.22 -2.75 23.57 -0.0011
r 11.93(%) 311.08 -2.7 23.3 0.0015
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Table 3: Statistics of Hedging Errors(yen)

Strategy Mean Std Err Mode Min 1% 5% 10% 25%
B.S. 0.03 1.22 0.43 -23.05 -4.59 -2.03 -1.22 -0.35

C&W 0.00 1.77 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12
out strategy -0.05 1.39 -0.98 -1.12 -1.11 -1.05 -1.00 -0.84

Fig.3 shows histograms of the performances of the strategies and Table
3 shows their statistics, where C&W stands for Chung and Wang [2]. First,
while there are substantial losses(over 2.0yen) in the results of B.S., the
maximum loss is 1.12 yen in our strategy, which means that out strategy
can avoid substantial losses. Second, it is found from Fig.3 that almost
half scenarios of the strategy of Chung and Wang [2] are the worst, where
the maximum loss is 1.12 yen. On the other hand, our strategy mostly
avoids the worst case and achieve improvements in VaR over the Chung
and Wang [2](see Table 3). Consequently, it is confirmed that our strategy
can avoid substantial losses and mostly prevent the worst case scenario of
Chung and Wang [2].

6 Concluding Remarks

We introduced a trading strategy that dynamically rebalances super-
replicating portfolios; this strategy is attractive for both investment and
hedging. Then, without assuming any models under the continuous pro-
cesses of the underlying variables, we derived the Doob-Meyer decomposi-
tion for the value process of this strategy to obtain the general properties:
specifically, we found that the performance of the strategy is characterized
by the the increasing part of the decomposition. Also, our general frame-
work was successfully applied to cross-currency and one-touch options,
which provides more concrete implications in practice. Moreover, numer-
ical examples for cross-currency options confirmed the property shown in
the previous sections, and demonstrated our strategy is useful for hedging
under stochastic volatility environment.

Finally, our next research topic will be to analyze properties of the
dynamics of the optimal parameter K∗ and to evaluate the expectation of
the increasing part of the super-martingale process in order to calculate a
price of the option based on the strategy. Also an extension of our result
to discontinuous processes of the underlying variables is an interesting
theme.

A Analytical Results for Exchange Op-
tions under Black-Scholes Model

In this section, we derive analytical results under the Black-Scholes model
of exchange options. For simplicity, we express the price of asset 1 and as-
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set 2 with Xt and Yt respectively instead of X
(i)
t . We assume the following

assumption.

Assumption 7. The processes of both asset 1 and asset 2 are assumed
to be log-normal with constant volatility:

dXt = σXXtdW X
t (A.1)

dYt = σY YtdW Y
t , (A.2)

where W X
t , W Y

t are 1 dimensional Brownian motions under the risk neu-
tral measure Q, and σX and σY are constant.

In addition, we define some notations:

N(x) =
1√
2π

Z x

−∞
e−

y2
2 dy (A.3)

d±
X =

log x
K

± σ2
Xτ

σX
√

τ
(A.4)

d±
Y =

log y
K

± σ2
Y τ

σY
√

τ
(A.5)

where τ = T − t.
First, we derive the optimal strike price and the value of optimal port-

folio for the super-replication and the sub-replication respectively.

Proposition 3. The optimal strike of the super-replication is:

KG(t, x, y) = x
σY

σX+σY y
σX

σX+σY e−
1
2 σXσY τ , (A.6)

and the upper bound of an exchange option is:

CBS (t, x, y, |σX + σY |) . (A.7)

Proof. By Eq.(4.8), KG(t, x, y) must satisfy ∂G
∂K

(t, x, y, KG
t (t, x, y)) = 0.

So, d−
X = −d−

Y . Then, we get (A.6).
The value of super-replicating portfolio is:

CX(t, x, K) + P Y (t, y, K)

= xN(d+
X) − KN(d−

X) + KN(−d−
Y ) − yN(−d+

Y )

= xN(d+
X) − yN(−d+

Y )

= xN(d1) − yN(d2)

= CBS (t, x, y, σX + σY ) , (A.8)

where K = KG(t, x, y), d1 =
log x

y
+ 1

2 (σX+σY )2τ

(σX+σY )
√

τ
, d2 =

log x
y
− 1

2 (σX+σY )2τ

(σX+σY )
√

τ
.

Proposition 4. Assume σX < σY . The optimal strike of the sub-replication
is:

KL(t, x, y) = x
−σY

σX−σY y
σX

σX−σY e
1
2 σXσY τ , (A.9)

and the lower bound of an exchange option is:

CBS (t, x, y, |σX − σY |) . (A.10)
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Proof. Put dX = d+
X , dY = d+

Y , we have

∂2CX

∂K2
(t, K) =

1√
2π

x

K2σX
√

τ
e−

1
2 d2

X (A.11)

∂2CY

∂K2
(t, K) =

1√
2π

y

K2σY
√

τ
e−

1
2 d2

Y . (A.12)

In order to investigate the sign of ∂LC

∂K
and ∂LP

∂K
, we define the ratio ψ(K):

ψ(K) =
∂2CX

∂K2 (K)
∂2CY

∂K2 (K)

=
x

y

σY

σX
e−

1
2 (d2

X−d2
Y ). (A.13)

There are at least two roots of the equation ψ(K) = 1, because
R +∞
0

∂2CX

∂K2 (K)dK =
R +∞
0

∂2CY

∂K2 (K)dK = 1 and limK→0 ψ(K) = limK→+∞ ψ(K) = 0 by the

assumption σX < σY . Consider the sign of ∂ψ
∂K

:

∂ψ

∂K
(K) =

2ψ(K)

K

 

log x
K

+ 1
2
σ2

Xτ

σ2
Xτ

−
log y

K
+ 1

2
σ2

Y τ

σ2
Y τ

!

=
2ψ(K)

Kτ

„„

1

σ2
Y

− 1

σ2
X

«

log K +
1

σ2
X

log x − 1

σ2
Y

log y

«

.

(A.14)

Then, the number of the roots of the equation ψ(K) = 1 is exactly two.

The fact that ∂2LC

∂K2 > 0 is equivalent to ψ(K) > 1 and limK→0
∂LC

∂K
=

limK→+∞
∂LC

∂K
= 0 implies that the equation ∂LC

∂K
= 0 has an unique

solution. By the same reason, the equation ∂LP

∂K
= 0 has an unique

solution.
The definition of LC(t, x, y, K) and LP (t, x, y, K) shows that

lim
K→0

LC(t, x, y, K) = x − y (A.15)

lim
K→0

LP (t, x, y, K) = 0, (A.16)

and

lim
K→+∞

LC(t, x, y, K) = 0 (A.17)

lim
K→+∞

LP (t, x, y, K) = x − y. (A.18)

As a result, we find that LC(t, x, y, K) has only one local minimum
and LP (t, x, y, K) has only one local maximum.

In order to compare a maximum of LP (t, x, y, K) with that of LC(t, x, y, K),
we calculate the maximum of LP (t, x, y, K). Let K∗ be the solution of

the equation ∂LP

∂K
(t, x, y, K) = 0. By ∂P X

∂K
(t, x, y, K) = ∂P Y

∂K
(t, x, y, K),

we can derive d−
X = d−

Y and then,

K∗ = x
−σY

σX−σY y
σX

σX−σY e
1
2 σXσY τ . (A.19)
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The maximum of LP (t, x, y, K) is:

−P X(t, x, K) + P Y (t, y, K)

= −(KN(−d−
X) − xN(−d+

X)) +
`

KN(−d−
Y ) − yN(−d+

Y )
´

= xN(−d+
X) − yN(−d+

Y )

= xN(d1) − yN(d2)

= CBS (x, y, |σX − σY |) , (A.20)

where K = K∗, d1 =
log x

y
+ 1

2 (σX−σY )2τ

|σX−σY |
√

τ
and d2 =

log x
y
− 1

2 (σX−σY )2τ

|σX−σY |
√

τ
. This

maximum is bounded below by (x − y)+.
Finally, we conclude that the optimal strike is:

KL(t, x, y) = K∗, (A.21)

and the lower bound of an exchange option is:

sup
K>0

max{LC(t, x, y, K), LP (t, x, y, K)} = LP (t, x, y, KL(x, y)). (A.22)

By the proof of Proposition 4, we have the following proposition, which
means that Assumption 3 holds true for sub-replication under a certain
condition.

Proposition 5. Assume σX < σY , then the optimal strike price of sub
replicating portfolio is determined uniquely. L(t, x, y, K) can be differen-
tiated with respect to x, y and K in the neighborhood of K = KL(t, x, y)
and KL(t, x, y) can be differentiated with respect to x, y. Moreover, we
have

∂L

∂K
(t, x, y, KL(t, x, y)) = 0 (A.23)

∂2L

∂K2
(t, x, y, KL(t, x, y)) > 0. (A.24)

We have the Doob–Meyer decomposition explicitly.

Corollary 1. Assume Assumption 7 and

D

W X , W Y
E

t
= ρt, (A.25)

where ρ ∈ [−1, 1] is constant. Let ψ be the probability density function for

the standard normal distribution : ψ(x) = 1√
2π

e−
x2
2 .

Then, in case of the super-replication,

A∗
t =

Z t

0

1 + ρ√
T − s

„

Xs

σX
ψ(dG

X) +
Ys

σY
ψ(dG

Y )

«„

σXσY

σX + σY

«2

ds (A.26)

M∗
t =

Z t

0

„

∂CX

∂x
(s, Xs, K

G
s )dXs +

∂P Y

∂y
(s, Ys, K

G
s )dYs

«

,(A.27)
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where

dG
X :=

log Xs
Ys

+ 1
2
(σX + σY )2(T − s)

(σX + σY )
√

T − s
, (A.28)

dG
Y :=

log Xs
Ys

− 1
2
(σX + σY )2(T − s)

(σX + σY )
√

T − s
, (A.29)

KG
s := X

σY
σX+σY
s Y

σX
σX+σY

s e−
1
2 σXσY (T−s). (A.30)

In case of the sub-replication with σX < σY ,

A∗
t =

Z t

0

1 − ρ√
T − s

„

Xs

σX
ψ(dL

X) − Ys

σY
ψ(dL

Y )

«„

σXσY

σX − σY

«2

ds (A.31)

M∗
t =

Z t

0

„

∂P X

∂x
(s, Xs, K

L
s )dXs −

∂P Y

∂y
(s, Ys, K

L
s )dYs

«

,(A.32)

where

dL
X :=

log Xs
Ys

+ 1
2
(σX − σY )2(T − s)

(σX − σY )
√

T − s
, (A.33)

dL
Y :=

log Xs
Ys

− 1
2
(σX − σY )2(T − s)

(σX − σY )
√

T − s
, (A.34)

KL
s := X

−σY
σX−σY
s Y

σX
σX−σY

s e
1
2 σXσY (T−s). (A.35)

Proof. Combine Proposition 3, 4 and Theorem 1.
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21


