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Abstract

This article proposes a Bayesian estimation method of demand functions under block rate pric-

ing, focusing on increasing one, where we first considered the separability condition explicitly

which has been ignored in the previous literature. Under this pricing structure, price changes when

consumption exceeds a certain threshold and the consumer faces a utility maximization problem

subject to a piecewise-linear budget constraint. Solving this maximization problem leads to a sta-

tistical model that includes many inequalities, such as the so-called separability condition. Because

of them, it is virtually impractical to numerically maximize the likelihood function. Thus, taking a

hierarchical Bayesian approach, we implement a Markov chain Monte Carlo simulation to properly

estimate the demand function. We find, however, that the convergence of the distribution of simu-

lated samples to the posterior distribution is slow, requiring an additional scale transformation step

for parameters to the Gibbs sampler. These proposed methods are applied to estimate the Japanese

residential water demand function.
∗Corresponding author: Tel:+81-3-5841-5516, E-mail:omori@e.u-tokyo.ac.jp
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1 Introduction

Block rate pricing is a nonlinear pricing system often applied in public utilities, such as water. In

contrast to other goods and services offered at a single price, consumers under block rate pricing face

several prices corresponding to their level of consumption. Income tax also has this pricing structure

because the marginal tax rate changes according to total income. General microeconomic theory sug-

gests that efficient allocation is achieved by setting a good’s unit price equal to its production cost per

unit, which is called marginal cost pricing. At a practical level, several market failures exist, which

makes this marginal cost pricing inapplicable. In such cases, block rate pricing is often selected by

regulators.

To derive the demand function under block rate pricing, we adopt a discrete/continuous choice ap-

proach, which Burtless and Hausman (1978) first used to analyze taxation’s effect on labor supply (see

also Hanemann (1984); Hausman (1985); Moffitt (1986)). Model specifications of this kind are com-

monly used to evaluate tax policy or examine consumer behavior under block rate pricing structures,

such as labor supply (Burtless and Hausman, 1978), expenditure with food stamps (Moffitt, 1989), car

ownership and use (de Jong, 1990), electricity demand (Herriges and King, 1994; Reiss and White,

2005), and water demand (Hewitt and Hanemann, 1995; Olmstead, Hanemann, and Stavins, 2007).

While this approach is based on the consumer’s maximization problem, a corresponding statistical

model includes many inequality constraints. It is virtually impractical to numerically maximize the

likelihood function evaluating them. Further, as Moffitt (1986) pointed out, there is not only a compu-

tational burden but also nondifferentiability of the likelihood function. Thus, previous studies estimated

the demand function in a simplified manner: all consumers face the same two-block rate pricing. The
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exception seems to be Olmstead et al. (2007), who consider multiple-block (the number of blocks varies

from 2 to 4) rate pricing by the maximum likelihood method. Their method, however, ignores the so-

called separability condition, which becomes important as the number of blocks increases. In Japan,

consumers usually face more than two blocks (five to eleven for water and three to four for electricity),

which requires them to consider multiple-block rate pricing.

Therefore, this article, taking a hierarchical Bayesian approach, implements a Markov chain Monte

Carlo (MCMC) simulation to estimate the demand function, (see Chib (2001) for the MCMC method-

ology, and Chib and Greenberg (1996) for its use in econometrics), and incorporates two practical

characteristics compared to the previous studies. First, we allow the number of blocks to be more than

two. Then, the discrete/continuous approach derives the demand function as a multinomial generaliza-

tion of the type V Tobit model (see Chapter 10 of Amemiya (1985) for Tobit classifications, and Chib

(1992), which is a pioneering work of the Bayesian approach in Tobit modeling). Second, the separabil-

ity condition is explicitly considered, which guarantees that consumer preference is divided disjointly

by blocks. This condition has been ignored in previous studies, yet plays a critical role especially when

facing multiple-block rate pricing.

We find, however, that the distribution of samples obtained from the Gibbs sampler converges very

slowly to the posterior distribution. To improve sampling inefficiency, we introduce an additional scale

transformation step for parameters to the Gibbs sampler based on the generalized Gibbs step (GGS) by

Liu and Sabatti (2000).

The rest of this article is organized as follows. In Section 2, we describe the discrete/continuous

choice approach and the demand function under block rate pricing. Section 3 explains the statistical

model, derives its likelihood function and joint posterior distribution, and accounts for the separability

condition. With this posterior distribution, this section presents the MCMC algorithm and correspond-

ing generalized Gibbs step. Section 4 carries out a simulation study and reveals several properties of

our algorithms. After data description, Section 5 applies our proposed method to estimate the resi-

dential water demand function in Japan using microdata, and the price and income elasticities are also
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estimated to investigate the sensitivity of the demands in detail. Some remarks in Section 6 conclude

this article.

2 Demand Function

First, we explain the model settings following the discussion of Moffitt (1986). There are two goods:

a good under block rate pricing and all other goods. Suppose that the consumer’s demand for a good,

Y , is subject to K-block rate pricing, and that its demand is strictly positive, Y > 0. Let Ya and I be the

expenditure for other goods except Y and total income, respectively. The price system of Y is described

as follows. There are K prices, Pk (k = 1, . . . ,K), in relation to K blocks. These prices are fixed and

considered to be given constants throughout this article. In practice, price often changes monotonically,

such as Pk < Pk+1 or Pk > Pk+1 for k = 1, . . . ,K−1. This article focuses on the price system where price

increases monotonically, that is, Pk < Pk+1 (k = 1, . . . ,K − 1), which is called increasing block rate

pricing. Japanese residential water demand data in Section 5 offer an example of increasing block rate

pricing. Let Ȳk denote the upper limit, or threshold, of the k-th block (k = 0, . . . ,K), where we set Ȳ0 ≡ 0

and ȲK ≡∞ for convenience. In addition to marginal prices and thresholds, there is a fixed cost FC that

is independent of the consumption Y . At a practical level, this fixed cost represents a minimum access

charge. The threshold values, Ȳk, and a fixed cost FC are given fixed constants.

Let U(Y,Ya) be the well-defined utility function. Then, the consumer’s utility maximization prob-

lem is given by:

V =max
Y,Ya

U(Y,Ya) subject to c(Y)+Ya ≤ I, (1)

where c(Y) = FC +Pk(Y − Ȳk−1)+
∑k−1

j=1 P j(Ȳ j − Ȳ j−1), if Ȳk−1 ≤ Y < Ȳk for k = 1, . . . ,K. Figure 1 illus-

trates a budget constraint and indifference curve under three-block increasing block rate pricing, where

the second block is optimal with its optimal demand Yopt and level of indirect utility, V . The budget

constraint of this form is called a piecewise-linear budget constraint because it becomes linear given
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Figure 1: Utility maximization problem: three-block case.

the choice of a block.

Finally, the demand function is derived. Before its derivation, we need to define K conditional

utility maximization problems. For k = 1, . . . ,K, the k-th conditional problem is given by:

max
Y,Ya

U(Y,Ya) subject to PkY +Ya ≤ Qk, where Qk = I−FC−
k−1∑
j=1

(P j−P j+1)Ȳ j, (2)

and Qk is an augmented income (also referred to as virtual income). Under Problem (2), the consumer

can maximize utility as if facing a single price Pk and virtual income Qk. Let conditional demand Yk be

the solution to this conditional utility maximization problem, and we have the demand function under

increasing block rate pricing:

Y =


Yk, if Ȳk−1 < Yk < Ȳk and k = 1, . . . ,K,

Ȳk, if Yk+1 ≤ Ȳk ≤ Yk and k = 1, . . . ,K −1.
(3)

In the study of the demand function under block rate pricing, there are several functional forms such

as linear, quadratic, and log-linear functions for the conditional demand, Yk in Eq.(3); the log-linear

conditional demand model is one of the most popular models used in previous studies (see Hewitt
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and Hanemann (1995) for example). Thus, this article focuses on the log-linear model for conditional

demand, but our proposed estimation method would apply to other models in a similar manner. The

log-linear model is given by lnYk = β1 ln Pk + β2 ln Qk, where the parameters β1 and β2 represent the

price and income elasticities conditional on the block choice, respectively. For simplicity, let y, yk, ȳk,

pk, and qk denote logarithm of the demand, Y , k-th conditional demand, Yk, k-th threshold, Ȳk, k-th

marginal price, Pk, and k-th virtual income, Qk, respectively. Then, we have Eqs (3) with log-linear

model as:

y =


yk, if ȳk−1 < yk < ȳk and k = 1, . . . ,K,

ȳk, if yk+1 ≤ ȳk ≤ yk and k = 1, . . . ,K −1,
(4)

yk = β1 pk +β2qk ≡ xxx′kβββ, (5)

where xxxk = (pk,qk)′, βββ = (β1,β2)′, ȳ0 ≡ −∞ and ȳK ≡∞.

3 Bayesian Analysis of Demand Functions under Block Rate Pricing

3.1 Statistical Model

From this section, we append the subscript i to the i-th consumer’s variables (i = 1, . . . ,n), and the

superscript ∗ to latent variables. For examples, yi, ȳik, pik,qik,Ki are observed variables, while w∗i , s
∗
i are

unobserved that will be explained in the following paragraph. We notice that yik, the k-th log conditional

demand, is unobserved, having no superscript ∗ to avoid tedious notation. Because we construct a

statistical model which assumes different block rate pricing for different observation, variables for

block rate pricing are also marked by the subscript i.

Our statistical model, which is a multinomial extension of Moffitt (1986), is described as follows

(see also Hewitt and Hanemann (1995)). First, we introduce two unobserved random variables into

the demand function of the i-th consumer: heterogeneity, w∗i , and state variable, s∗i . Heterogeneity is a
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stochastic term that models consumers’ characteristics. The w∗i is assumed to follow the linear model:

w∗i = zzz′iδδδ+ vi, vi ∼ i.i.d. N(0,σ2
v), (6)

where zzzi and δδδ are d×1 vectors of explanatory variables for heterogeneity and corresponding parame-

ters, respectively, and vi is an independently and identically distributed disturbance term with a normal

distribution of mean 0 and variance σ2
v . We assume that heterogeneity for the i-th observation, w∗i , is

additive to log conditional demand yik. Then, the log conditional demand with heterogeneity, y∗i , for

the i-th consumer is given by:

y∗i =


yik +w∗i , if ȳi,k−1 < yik +w∗i < ȳik and k = 1, . . . ,Ki,

ȳik, if yi,k+1+w∗i ≤ ȳik ≤ yik +w∗i and k = 1, . . . ,Ki−1,
(7)

where yik = xxx′ikβββ and xxxik = (pik,qik)′.

Another latent variable is the state variable, s∗i . There are 2Ki−1 potential outcomes in the demand

function Eq. (7): Ki conditional demands with heterogeneity (yik +w∗i ) and Ki − 1 threshold demands

(ȳik). The state variable s∗i is an unobserved discrete random variable taking values from 1 to 2Ki − 1

and indicates which outcome the i-th observation selects: if s∗i is odd, observation i chooses conditional

demand with heterogeneity, and if s∗i is even, it selects kink point as its demand. More precisely:

s∗i =


2k−1, if y∗i = yik +w∗i and k = 1, . . . ,Ki,

2k, if y∗i = ȳik and k = 1, . . . ,Ki−1.
(8)

It is straightforward from Eq. (7) that the condition whether y∗i is yik +w∗i or ȳik is equivalent to the

interval condition for heterogeneity.

ȳi,k−1 < yik +w∗i < ȳik⇐⇒ w∗i ∈ Ri,2k−1 =
(
ȳi,k−1− yik, ȳik − yik

)⇐⇒ s∗i = 2k−1, (9)
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yi,k+1+w∗i ≤ ȳik ≤ yik +w∗i ⇐⇒ w∗i ∈ Ri,2k =
(
ȳik − yik, ȳik − yi,k+1

)⇐⇒ s∗i = 2k. (10)

Further, we assume that the conditional demand yi for the i-th consumer is observed with a distur-

bance:

yi = y∗i +ui, ui ∼ i.i.d. N(0,σ2
u), i = 1, . . . ,n, (11)

where ui implies optimization and specification error as well as measurement error.

Finally, the statistical model for the demand function under increasing block rate pricing is given

by following equations:

yik = xxx′ikβββ, xxxik = (pik,qik)′ , k = 1, . . . ,Ki, (12)

w∗i = zzz′iδδδ+ vi, vi ∼ i.i.d. N(0,σ2
v), (13)

s∗i =


2k−1, if w∗i ∈ Ri,2k−1 and k = 1, . . . ,Ki,

2k, if w∗i ∈ Ri,2k and k = 1, . . . ,Ki−1,
(14)

y∗i =


yik +w∗i , if s∗i = 2k−1 and k = 1, . . . ,Ki,

ȳik, if s∗i = 2k and k = 1, . . . ,Ki−1,
(15)

yi = y∗i +ui, ui ∼ i.i.d. N(0,σ2
u). (16)

Error terms, measurement error ui and error for heterogeneity vi, are assumed to be mutually indepen-

dent conditional on the block choice s∗i because they represent different sources of error. This model is

a multinomial extension of the Type V Tobit model (see Section 10.10 in Amemiya (1985) for the Type

V Tobit model).
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Remark 1. Suppose Ki = 2. Then, Eqs (14) and (15) reduce to:

s∗i =



1, if w∗i ∈ Ri1 = (−∞, ȳi1− yi1) ,

2, if w∗i ∈ Ri2 = (ȳi1− yi1, ȳi1− yi2) ,

3, if w∗i ∈ Ri3 = (ȳi1− yi2,∞) ,

y∗i =



yi1+w∗i , if s∗i = 1,

ȳi1, if s∗i = 2,

yi2+w∗i , if s∗i = 3.

(17)

Remark 2. There might be consumers whose first block is zero marginal price, Pi1 = 0. They are

assumed to consume more than or equal to the first threshold, ȳi1, as suggested by economic theory,

which leads to s∗i = 2, . . . ,Ki and Ri2 = (−∞, ȳi1− yi2).

3.2 Likelihood Function

The augmented likelihood function for observation i is derived by multiplying two densities. First, we

derive the joint density of unobserved variables, s∗i and w∗i . These variables are modeled through Eqs

(13) and (14). Thus:

f
(
s∗i ,w

∗
i | βββ,δδδ,σ2

v

)
= f

(
w∗i | δδδ,σ2

v

)
f
(
s∗i | w∗i ,βββ

)
∝ σ−1

v exp
[
− 1

2σ2
v

(
w∗i − zzz′iδδδ

)2
]
I
(
w∗i ∈ Ris∗i

)Ki−1∏
k=1

I
(
xxx′i,k+1βββ ≤ xxx′ikβββ

)
, (18)

where I(A) is an indicator function taking value 1 if A is true and 0 otherwise. The last truncation term,∏Ki−1
k=1 I(xxx′i,k+1βββ ≤ xxx′ikβββ), is the separability condition, which is explicitly considered in this article. The

role of the separability condition is explained in the next subsection.

Then, after the unobserved variables are determined by Eq. (18), the conditional density of yi is

derived through Eqs (15) and (16), and given by:

f
(
yi | s∗i ,w∗i ,βββ,σ2

u

)
∝


σ−1

u exp
[
− 1

2σ2
u

(
yi− xxx′ikβββ−w∗i

)2
]
, if s∗i = 2k−1 and k = 1, . . . ,Ki,

σ−1
u exp

[
− 1

2σ2
u

(yi− ȳik)2
]
, if s∗i = 2k and k = 1, . . . ,Ki−1,

(19)
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= σ−1
u exp

[
− 1

2σ2
u

(
yi− y∗i

)2
]
. (20)

Finally, multiplying these two densities (18) and (20), we obtain the augmented likelihood function for

observation i:

f
(
yi, s∗i ,w

∗
i | βββ,δδδ,σ2

u,σ
2
v

)
= f

(
yi | s∗i ,w∗i ,βββ,σ2

u

)
f
(
s∗i ,w

∗
i | βββ,δδδ,σ2

v

)
∝ σ−1

u σ
−1
v exp

[
−1

2

{
σ−2

u

(
yi− y∗i

)2
+σ−2

v

(
w∗i − zzz′iδδδ

)2
}]

×I
(
w∗i ∈ Ris∗i

)Ki−1∏
k=1

I
(
xxx′i,k+1βββ ≤ xxx′ikβββ

)
.

(21)

3.3 Separability Condition

We briefly describe the role of the separability condition in this model. The separability condition is a

condition that disjointly creates heterogeneity intervals. It guarantees that the upper and lower limit for

intervals in (10) would not be upside down. Under multiple-block rate pricing, it is given by:

yi,k+1 ≤ yik,
(
⇐⇒ xxx′i,k+1βββ ≤ xxx′ikβββ

)
for k = 1, . . . ,Ki−1 and i = 1, . . . ,n. (22)

Let us illustrate the maximization of augmented likelihood under two-block increasing block rate

pricing assuming there is only one observation. Then, condition (22) reduces to be yi2 ≤ yi1, which is the

only condition. Without this condition, the interval for kink point demand is allowed to be upside down

and, hence, there could be the case that ȳ1−yi2 <w∗i < ȳ1−yi1 (see Ri2 of Eq. 17). Such a situation leads

to ambiguity in the state variable, s∗i = 1 or 3. Therefore, estimation without the separability condition

causes disagreement with the model.

Once the separability condition is adopted, it is difficult to take care of many inequality condi-

tions using the maximum likelihood method. The separability condition is one of reasons we take the
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Bayesian approach.

3.4 Posterior Distribution and Gibbs Sampler

First, we assume proper prior distributions for the model parameters (βββ,δδδ,σ2
u,σ

2
v). For these parameters,

we assume normal distributions for βββ and δδδ conditional on σ2
u and σ2

v , and inverse gamma distributions

for σ2
u and σ2

v .

βββ | σ2
u ∼ N2

(
µµµβββ,0,σ

2
uΣΣΣβββ,0

)
, δδδ | σ2

v ∼ Nd
(
µµµδδδ,0,σ

2
vΣΣΣδδδ,0

)
, σ2

u ∼ IG
(
nu,0

2
,
S u,0

2

)
, σ2

v ∼ IG
(
nv,0

2
,
S v,0

2

)
, (23)

where µµµβββ,0, is a 2× 1 known vector, ΣΣΣβββ,0 = diag(σ2
β1,0
,σ2
β2,0

) is a 2× 2 known diagonal matrix with

diagonal elements (σ2
β1,0
,σ2
β2,0

), µµµδδδ,0 is a d×1 known vector, ΣΣΣδδδ,0 is a known d×d covariance matrix,

and nu,0 > 0, S u,0 > 0, nv,0 > 0, S v,0 > 0 are some known constants. In this article, subscript on the

normal distribution indicates its dimension.

Then, the posterior distribution for the statistical model (12)-(16) is obtained by multiplying the

augmented likelihood function (21) over all observations with prior distribution π
(
βββ,δδδ,σ2

u,σ
2
v

)
:

π
(
βββ,δδδ,σ2

u,σ
2
v , sss
∗,www∗ | yyy

)
∝ π

(
βββ,δδδ,σ2

u,σ
2
v

)
×σ−n

u σ
−n
v exp

[
−1

2

{
σ−2

u
(
yyy− yyy∗

)′ (yyy− yyy∗
)
+σ−2

v
(
www∗−ZZZδδδ

)′ (www∗−ZZZδδδ
)}]

×
n∏

i=1

I(w∗i ∈ Ris∗i )
Ki−1∏
k=1

I
(
yi,k+1 ≤ yik

) , (24)

where yyy= (y1,y2, . . . ,yn)′, yyy∗ = (y∗1,y
∗
2, . . . ,y

∗
n)′, sss∗ = (s∗1, s

∗
2, . . . s

∗
n)′, www∗ = (w∗1,w

∗
2, . . .w

∗
n)′ and ZZZ = (zzz1,zzz2, . . . ,zzzn)′.

Under log-linear conditional demand and above priors, the full conditional posterior distributions

are all standard distributions, which are provided in Appendix A.1. Then, we implement a standard

Gibbs sampler to draw samples from the posterior distribution (24), which is summarized in the fol-
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lowing seven steps:

Algorithm 1.1: MCMC algorithm for model (12)-(16)

Step 1. Initialize βββ,δδδ, sss∗,www∗,σ2
u and σ2

v .

Step 2. Generate β1 given β2, sss∗,www∗,σ2
u.

Step 3. Generate β2 given β1, sss∗,www∗,σ2
u.

Step 4. Generate
(
σ2

v , δδδ
)

given www∗.

Step 5. Generate
(
s∗i ,w

∗
i

)
given βββ,δδδ,σ2

u,σ
2
v for i = 1, . . . ,n.

Step 6. Generate σ2
u given βββ, sss∗,www∗.

Step 7. Go to Step 2.

A blocking technique is used to sample (s∗i ,w
∗
i ) in order to isolate the relationship in which w∗i deter-

mines s∗i , while blocking in (σ2
v , δδδ) is to accelerate the convergence of MCMC draws.

3.5 Convergence Acceleration

As we shall see in Sections 4 and 5, the obtained samples of parameters are sometimes highly auto-

correlated so that their convergence to the posterior distribution is slow. This subsection introduces a

generalized Gibbs step proposed by Liu and Sabatti (2000) to improve sampling inefficiency. While its

simple implementation, the GGS improves sampling efficiency to some extent in the estimation of the

discrete/continuous choice model.

The main idea of the GGS is to add one more sampling step for a transformation group keeping the

transition kernel of MCMC invariant, such that we can obtain acceleration effects similar to those of

reparametrization or blocking (see Section 2 of Liu and Sabatti (2000) and Section 8.3 of Liu (2001)

for a general definition of the GGS).

In our case, we apply the GGS to all parameters ζζζ = (βββ,δδδ,www∗,σu,σv) so as to implement the one-

step Metropolis-Hastings (MH) algorithm described below, and take a scale transformation group, that

is, Γ = {g > 0 : g(ζζζ) = gζζζ}. Then, the full conditional distribution of g̃ ≡ g−1 is derived as Eq. (A.36) in
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Appendix A.2. This full conditional distribution is a nonstandard distribution, so that the MH algorithm

is adopted to draw a sample of g̃. Starting from the initial value g̃ = 1, we draw a candidate g̃′, which

follows the truncated normal distribution with mean µg̃, variance σ2
g̃ and truncation interval Rg̃:

T NRg̃

(
µg̃,σ

2
g̃

)
, (25)

where µg̃ = a2/a1 and σ2
g̃ = a−1

1 (see Eqs (A.37), (A.38), and (A.40) in Appendix A.2 for definitions

of a1, a2, and Rg̃). The candidate is accepted with probability: α (g̃, g̃′) = min[1, (g̃′/g̃)a0−1], where

a0 = n+nu,0+nv,0.

It is usually the case to repeat the MH step in order to obtain a sample from the conditional posterior

distribution of g̃. As we have proved in Appendix A.3, however, it suffices to draw a sample only once

using the initial value g̃ = 1. Therefore, the GGS is implemented by replacing Step 7 of Algorithm 1.1

described in the previous subsection:

Algorithm 1.2: Generalized Gibbs step for model (12)-(16)

Step 7. Generate g̃ given βββ, sss∗,www∗,σu,σv.

(a) Generate g̃′ ∼ T NRg̃(µg̃,σ
2
g̃) and u∼U (0,1) where U (0,1) denotes a uniform distribution

on interval (0,1).

(b) Accept a candidate g̃′ if u ≤ α (1, g̃′). If rejected, set g̃ = 1.

Step 8. Transform parameters (βββ,δδδ,www∗,σu,σv) by multiplying parameters by g = g̃−1.The state

variable sss∗ is also updated by this new www∗.

Step 9. Go to Step 2.

4 Illustration Using Simulated Data

This section illustrates our Bayesian estimation of the statistical model (12)-(16) with simulated data.

We consider two-block increasing block rate pricing with 100 observations. The marginal price for the
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first block is generated using
∣∣∣∣N (

2,0.42
)∣∣∣∣, which is the absolute value of a random number following a

normal distribution with mean 2 and variance 0.42. The absolute value is taken to guarantee a positive

marginal price. The second block’s marginal price is similarly generated by adding
∣∣∣∣N (

0.7,0.22
)∣∣∣∣ to

the first block’s price. There is one threshold in this price system, which is set equal to 2. As for

other variables, income is generated by
∣∣∣∣N (

3,0.32
)∣∣∣∣ and fixed cost is equal to 0. We consider only

one explanatory variable other than the constant term for heterogeneity following N(2.5,1). Thus,

δδδ = (δ0, δ1)′.

The true parameter values are (β1,β2, δ0, δ1,σu,σv) = (−0.6,0.3,0.1,0.1,0.3,0.1). The regression

parameter for price is set to be more elastic than that for income because of the evidence often reported

in previous studies on the water demand function (see Table 2 of Hewitt and Hanemann (1995)). The

prior distributions are:

βββ | σ2
u ∼ N2

(
000,102σ2

uIII
)
, δδδ | σ2

v ∼ N2
(
000,102σ2

v III
)
, σ2

u ∼ IG
(
10−2,10−2

)
, σ2

v ∼ IG
(
10−2,10−2

)
. (26)

The mean and variance for the precision parameters σ−2
u and σ−2

v are 1 and 102, respectively. In hierar-

chical modeling, it is often pointed out that flat or improper prior distributions for variance parameters

may lead to (almost) improper posterior distributions (see, for example, Section 5.3 of Gelman, Carlin,

Stern, and Rubin (1995)), which makes Bayesian inference unreliable. Thus, we use relatively tight

proper prior distributions for σ2
u and σ2

v to avoid (almost) improper posterior distributions.

We draw MCMC samples by the Gibbs sampler, Algorithm 1.1, and find its sample autocorrelations

are very high. Thus, we apply the generalized Gibbs step, Algorithm 1.2, to accelerate convergence

of samples to their posterior distribution. After deleting 3× 104 samples, we draw 105 samples by

applying these accelerations to make Bayesian inference. The GGS results are reported in Table 1.

Because other results obtained by the Gibbs sampler is very similar to those obtained by the GGS, we

omit them.

Table 1 reports true values, posterior means, posterior standard deviations, 95% credible intervals,
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Table 1: Estimation summary with simulated data by GGS

Parameter True Mean SD 95% interval INEF CD ∗∗

GGS / GS ∗

β1 −.6 −.71 .31 [−1.33 − .11] 345 / 400 .123
β2 .3 .15 .25 [− .42 .60] 731 / 1113 .836
δ0 (constant) .1 .45 .27 [ .072 1.20] 1034 / 1972 .304
δ1 .1 .070 .031 [ .011 .13] 25 / 16 .051
σu (measurement error) .3 .26 .062 [ .10 .35] 152 / 84 .314
σv (heterogeneity) .1 .17 .078 [ .059 .33] 144 / 99 .370
∗ “INEF GGS / GS” denotes the inefficiency factors using the Gibbs sampler with Generalized

Gibbs step and the standard Gibbs sampler
∗∗ “CD” denotes the convergence diagnostic.

Lags

C
o

rr
e
lo

g
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m

Figure 2: Sample autocorrelation functions for β2.

estimated inefficiency factors, and the convergence diagnostic, that is, the two-sided p-value of the

test for convergence. The inefficiency factor is defined as 1+ 2
∑∞

j=1 ρ( j), where ρ( j) is the sample

autocorrelation at lag j. It is calculated by using the spectral density (see Section 3.2 of Chib (2001)

for details). It is interpreted as a ratio of the variance of the sample mean from the Markov chain to the

variance of uncorrelated draws. If the inefficiency factor is close to one, the sampling method is almost

as efficient as an independent draw. The greater the inefficiency factor becomes, the more samples we

should take to reach convergence. The convergence diagnostic, on the other hand, is the test statistic

with a null of convergence, proposed in Section 3.2 of Geweke (1992). We use the first 10% and the

15



last 50% of samples to calculate this test statistic as suggested by Geweke (1992).

In Table 1, we found smaller inefficiency factors by GGS than GS. We compare these two samplers

in terms of their sample autocorrelation functions. Figure 2 shows sample autocorrelation function of

β2 for GS and GGS results, where autocorrelation decays more quickly in GGS than in GS. Thus, it is

concluded that the GGS is effective for β2 in improving its sample convergence.

There are two findings regarding this simulation. First is the role of the kink point. The state change

helps us to separately estimate measurement error σu and heterogeneity error σv. When kink point is

chosen, however, other information, such as regression coefficients βββ and coefficients for heterogeneity,

δδδ, is lost, which causes the sampling of our model to become inefficient.

Second, initial values are important for efficient sampling, which is also a difficult task in the maxi-

mum likelihood method (see Section 4 of Moffitt (1986)). The full conditional distributions, especially

for βββ, are truncated by so many inequality constraints that samples cannot move freely in their state

space. Thus, when initial values are far from true values, it takes a considerable amount of time for

the distribution of the MCMC samples to converge to the posterior distribution. Because we do not

know much about the true parameter values in empirical analysis, testing several initial values might

be effective when sampling appears to be inefficient.

5 Estimation of the Japanese Residential Water Demand Function

5.1 Data Description

We use the household-level dataset gathered by ourselves through an online questionnaire on the Inter-

net. The data are monthly and cover randomly-chosen 1250 households in Tokyo and Chiba prefectures.

All household faces increasing block rate pricing whose number of blocks varies from five to eleven.

The dependent variable is the amount of water calculated from each payment using corresponding price

tables. The explanatory variables to be used for empirical analysis are summarized in Table 2 and their

summary statistics are found in Table 3 and Figure 3.

16



Table 2: Variables used in the water demand function
Variable Coefficient Description

year June 2006
num. of obs. 365

price β1 water+sewer (¥103/m3)
virtual income β2 monthly income augmented by price (¥103)

variables for w∗i δ0 constant
δ1 number of members in household
δ2 number of rooms in house/apartment
δ3 total floor space of house/apartment (50m2)

Table 3: Summary statistics of variables used in the water demand function
Variable Unit Mean SD Min. Max.

amount of water logm3 3.53 .51 .098 4.87
monthly income ¥103 1145.00 566.11 166.67 4666.70

number of members in household person 3.05 1.22 1 7
number of rooms in house/apartment room 4.29 1.10 1 8
total floor space of house/apartment 50m2 1.66 .70 .24 4.60

The number of observations is reduced because of their missing or inappropriate answers. Obser-

vations are also omitted for technical reasons, as listed below.

• Consumption within the zero marginal price block is observed.

• Living in cities that have discontinuous parts in their price system.

• Living in cities that changed rate tables in June 2006.

• Using a well for water use because of its special charge system.

Observations linked to any of these five reasons are omitted.

Regarding the income variable, it is a sensitive issue to ask households their exact income level.

In our research, the household annual income is recorded in one of eight intervals: 0-2, 2-4, 4-6, 6-8,

8-10, 10-12, 12-15, over 15 million yen. Then, we use the median of the interval divided by 12 as a

proxy for monthly income for most households. Households whose incomes are over 15 million yen
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Figure 3: Histograms of the number of blocks, price, and fixed cost.

are asked to answer their approximate annual income, and we divide it by 12 as monthly income for

such households.

5.2 Empirical Result

Initially, the following prior distributions are assumed for parameters of the demand function:

βββ | σ2
u ∼ N2

(
000,10σ2

uIII
)
, δδδ | σ2

v ∼ N4
(
000,10σ2

v III
)
, σ2

u ∼ IG (0.1,0.1) , σ2
v ∼ IG (0.1,0.1) . (27)

Because the Gibbs sampler (Algorithm 1.1) in Subsection 3.4 is very slow to converge to the pos-

terior distribution, we accelerate the convergence of the MCMC samples using the GGS described in

Algorithm 1.2 of Subsection 3.5. The initial 16×105 samples are discarded and the subsequent 4×106

samples are recorded. The recorded samples are reduced to 104 samples by picking up every 400-th

value. These estimation results are shown in Table 4.

At first, to check the plausibility of our proposed model, we carried out the numerical posterior pre-

dictive checks (PPCs) based on these results (see, e.g., Chapter 6 of Gelman, Carlin, Stern, and Rubin

(2003)). Seven test quantities, the first and third quartile, mean, median, standard deviation, minimum,

and maximum, are chosen to conduct PPCs, and the results are found in Figure 4. The density plots
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Table 4: Water demand function

Parameter Mean SD 95% interval INEF CD ∗∗

GGS / GS ∗

β1 (price) −1.09 .22 [−1.52 − .67] 242.55 / 370.44 .201
β2 (income) .067 .044 [− .028 .14] 272.18 / 583.76 .025
δ0 (constant) .23 .51 [− .89 1.12] 312.61 / 500.76 .055
δ1 (num. of members) .23 .039 [ .16 .31] 54.90 / 63.16 .983
δ2 (num. of rooms) .14 .049 [ .038 .23] 7.65 / 9.31 .198
δ3 (floor space) .041 .077 [− .11 .20] 7.07 / 7.47 .987
σu (measurement error) .42 .018 [ .38 .45] 8.91 / 19.41 .531
σv (heterogeneity) .20 .038 [ .14 .28] 17.39 / 10.60 .021
∗ “INEF GGS / GS” denotes the inefficiency factors using the Gibbs sampler with Generalized

Gibbs step and the standard Gibbs sampler
∗∗ “CD” denotes the convergence diagnostic.

1st q. ( )p = .082 3rd q. ( )p = .57Mean ( )p = .067 Median ( )p = .25

Max. ( )p = .84Min. ( )p = 1.00SD ( )p = .53

Figure 4: Posterior predictive checks.

represent those of test quantities based on the replicated data from the predictive distribution and the

vertical lines denote the values of test quantities based on the observed data. We also calculated the

posterior predictive p-values, which are shown in parentheses. All density plots and p-values, except

those for the minimum, indicate that the discrete/continuous choice model would be plausible to our

Japanese residential water demand data. The small p-value for the minimum indicates that we may

need to improve our model for small consumptions (five smallest consumptions are 0.098, 1.79, 1.86,

1.92, and 1.95 logm3). As stated in Remark 2 of Subsection 3.1, for simplicity, we excluded house-
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holds that consume within the zero marginal price block so that all consumptions are above this block.

The PPC result for the minimum would be improved when we consider the model with these small

amount consumers, which would be a future work.

Next, we analyze the GGS results. The posterior mean of the price elasticity β1 is estimated to

be negative, −1.09. Because its 95% credible interval does not include 0, the probability of β1 < 0 is

greater than 0.95. This is consistent with what we expect from the economic theory. On the other hand,

the posterior mean of the income elasticity β2 may not differ from 0, because its 95% credible interval

includes 0.

Among the independent variables that are expected to explain individual heterogeneity, the number

of members in household and number of rooms in house/apartment show positive effects on residential

water demand because Pr(δ j > 0 | yyy) > .95 ( j = 1,2). Further, the former has larger marginal effect on

the demand than the latter, that is, one person increase in household has larger effect for water demand

than one room extension to house/apartment does. In contrast, total floor space of house/apartment (δ3)

has no effect on water demand in terms of its 95% credible interval.

We compare these parameter estimates with those of previous studies on water demand. Hewitt

and Hanemann (1995) used the microdata from Denton, Texas, introduced the discrete/continuous

choice model as their underlying statistical model, and estimated the water demand function under

block rate pricing by the maximum likelihood method. Because of its complex form of the likelihood

function, their analysis simply focuses on households under two-block increasing block rate pricing.

They reported that the price and income parameters are −1.8989 and 0.1782, respectively. While they

are larger in absolute values than ours, Hewitt and Hanemann (1995)’s estimates show a similar pattern

to ours, that is, the larger price and smaller income elasticities in their absolute values.

Olmstead et al. (2007) also applied the discrete/continuous choice model to estimate the water de-

mand function. They used the microdata from the United States and Canada facing different price

schedules, that is, two-block and four-block increasing block rate pricings, and the uniform price sys-

tem. They estimated that the price and income parameters for households under block rate pricing are
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−0.6411 and 0.1959, respectively.

Dalhuisen, Florax, de Groot, and Nijkamp (2003) analyzed 64 studies on water demand and pre-

sented the meta analysis on price and income elasticities. They showed that the price and income elas-

ticity are dispersed with means −0.41 and 0.43, and standard deviations 0.86 and 0.79, respectively.

Their estimates are somewhat similar when we take their large standard deviations into consideration.

5.3 Predictive Analysis

At the end of this section, we conduct a posterior predictive analysis on water demand when the block

rate price schedule is changed to the uniform pricing. We consider two types of uniform pricing, that

is, the same uniform price for all households and the different uniform prices for each households. For

the former, let the unit price be U100/m3, U250/m3, or U500/m3, setting the fixed cost to U3,500 for

every unit price cases. These unit prices are inexpensive, almost as high as, or expensive ones for the

majority of households compared to the present increasing block rate pricing, and fixed cost is set close

to the present one for most households (see Figures 3(b) and 3(c)). For the latter, on the other hand,

we pick up the price of the block where the consumption is actually made as the single price of this

suppositional uniform price system and the fixed cost remains the same with the present schedule. To

analyze the effect of such price schedule changes, we generate samples of predictive demand using the

Gibbs with GGS samples, and draw boxplots of predictive distributions for each household found in

Figure 5.

In this figure, solid lines and each boxplots represent plots of actual log demands and boxplots of

predictive distribution for each households, respectively. The water consumptions of households are

arranged in ascending order, and the number of household is reduced to 60 by picking up every 6-th

household. Each box, upper and lower whiskers denote the range between the first and third quartiles,

95-th and 5-th percentiles, respectively.

First three figures in Figure 5 reveals that most households consume more water as the price be-
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Figure 5: Effect of uniform pricings.

comes less inexpensive, which is expected from the negatively estimated price elasticity. The lower

right figure of Figure 5, on the other hand, suggests that households who consume less tend to choose a

suboptimal block. From the microeconomic theory view point, the price system change of this kind has

no effect on the consumption as far as a underlying preference satisfies regular assumptions. Our statis-

tical modeling, however, introduces the measurement error. Due to the measurement error, households

would choose a suboptimal block, and such a suboptimal choice is partly captured by this suppositional

price system.

6 Concluding Remarks

This article proposed a Bayesian estimation method for demand functions under block rate pricing and

conducted empirical analysis with Japanese residential water demand data. Furthermore, the separabil-

ity condition is explicitly considered to obtain appropriate estimates. Our method is useful for analyzing

the demand for water services as well as for other goods or services facing block rate pricing, includ-
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ing taxation. Furthermore, it would be possible to apply our method to examine consumer’s choice

over multiple product categories and brands (Song and Chintagunta, 2007) and consumer’s selection of

calling plans for wireless services (Iyengar, 2004).

Future research may be conducted on several related issues. First, the supply structure needs to be

considered to apply our method to other goods under block rate pricing. Water companies are regional

monopolists and obliged to supply as much as consumers require. Thus, we excluded firm competition.

Other suppliers, such as telecommunication services and deregulated electricity services, face no such

obligation and compete with each other. To analyze the demand of these services, it is necessary to

consider the supply structure explicitly in our model. Disequilibrium models are a framework that can

handle such a market structure. See Kunitomo and Sato (1996) and Maddala (1983) for a discussion of

disequilibrium models.

Second, as pointed out in the previous section, there are households who consume less than the

zero marginal price block. The discrete/continuous choice model proposed by this article assumes to

exclude such a behavior. Another structural approach to these consumers is necessary as a future work.

Thirdly, substitution among electricity, gas, and other fuels needs to be considered. It is possible

for the block rate pricing model proposed here to be extended to a multivariate setting in a natural way.

Furthermore, Japanese gas services are provided under decreasing block rate pricing. Thus, a subse-

quent study will examine the energy demand function under a mixture of increasing and decreasing

block rate pricing.

Finally, an improved convergence acceleration method needs to be proposed. Although the gener-

alized Gibbs step improved sampling efficiency, the regression coefficients, βββ, still show high sample

autocorrelations. Further improvement of convergence acceleration is a subject of future research.
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Appendices

A.1 Full Conditional Distributions for the Statistical Model (12)-(16)

This section provides the full conditional distributions for the statistical model (12)-(16) following the

standard Gibbs sampler’s steps (see Algorithm 1.1 in Subsection 3.4). Let A denote a set of observa-

tions who do not select the threshold or kink point as their demand, that is, A = {i|s∗i is odd and equal

to 2ki−1}. Furthermore, without loss of generality, we assume that pi1,qi1, ȳi1 are strictly positive, that

is, pi1,qi1, ȳi1 > 0. This can be accomplished by adjusting the unit of measurement of price and income.

When Pi1 = 0 (pi1 = −∞), we assume s∗i ≥ 2 and let pi2 > 0.

Step 2. Generate β1 given (β2, sss∗,www∗,σ2
u). The full conditional distribution for β1 is the truncated

normal distribution T NR1(µ1,σ
2
uσ

2
1), where:

µ1 = σ
2
1

σ−2
β1,0µβ1,0+

∑
i∈A

piki

(
yi−β2qiki −w∗i

) , σ−2
1 = σ

−2
β1,0+

∑
i∈A

(
piki

)2 ,

R1 =

(
max

i
(−∞,BLi) ,min

i,k

(
BUi,−β2

qi,k+1−qik

pi,k+1− pik

))
,

(A.28)

and µβ1,0 is a prior mean of β1. The BLi and BUi are the lower and upper bounds of the interval Bi such

that:

Bi =


(

ȳi,k−1−β2qik−w∗i
pik

,
ȳi,k−β2qik−w∗i

pik

)
, if s∗i = 2k−1,(

ȳi,k−β2qik−w∗i
pik

,
ȳi,k−β2qi,k+1−w∗i

pi,k+1

)
, if s∗i = 2k.

(A.29)

These Bis are constructed from intervals Ris∗i defined in (9) and (10) of Subsection 3.1. To sample

from the truncated normal distributions, we use the inverse cumulative distribution function sampling

method (see Section 1.3 of Gamerman (1997)).

Step 3. Generate β2 given β1, sss∗,www∗,σ2
u As in Step 2, the full conditional distribution for β2 is the
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truncated normal distribution T NR2(µ2,σ
2
uσ

2
2), where:

µ2 = σ
2
2

σ−2
β2,0µβ2,0+

∑
i∈A

qiki

(
yi−β1 piki −w∗i

) , σ−2
2 = σ

−2
β2,0+

∑
i∈A

(
qiki

)2 ,

R2 =

(
max

i

(
−∞,BL†i

)
,min

i,k

(
BU†i ,−β1

pi,k+1− pik

qi,k+1−qik

))
,

(A.30)

and µβ2,0 is a prior mean of β2. The BL†i and BU†i are the lower and upper bounds of the interval B†i

such that:

B†i =


(

ȳi,k−1−β1 pik−w∗i
qik

,
ȳi,k−β1 pik−w∗i

qik

)
, if s∗i = 2k−1,(

ȳi,k−β1 pik−w∗i
qik

,
ȳi,k−β1 pi,k+1−w∗i

qi,k+1

)
, if s∗i = 2k.

(A.31)

Step 4. Generate (σ2
v , δδδ) given www∗. Because a blocking technique is applied in this step, δδδ is integrated

over the full conditional distribution of (δδδ, σ2
v) to obtain the full conditional of σ2

v . Thus, sample σ2
v

from the inverse gamma distribution, IG( nv,1
2 ,

S v,1
2 ), and δδδ from the multivariate normal distribution,

Nd(µµµδδδ,1,σ
2
vΣΣΣδδδ,1), where nv,1 = nv,0+n,

S v,1 = S v,0+µµµ
′
δδδ,0ΣΣΣ

−1
δδδ,0µµµδδδ,0+www∗′www∗−µµµ′δδδ,1ΣΣΣ

−1
δδδ,1µµµδδδ,1,

µµµδδδ,1 = ΣΣΣδδδ,1
(
ΣΣΣ−1
δδδ,0µµµδδδ,0+ZZZ′www∗

)
, ΣΣΣ−1
δδδ,1 = ΣΣΣ

−1
δδδ,0+ZZZ′ZZZ.

(A.32)

Step 5. Generate (s∗i ,w
∗
i ) given βββ,δδδ,σ2

u,σ
2
v for i = 1, . . . ,n. We again apply a blocking technique in

drawing samples of (s∗i ,w
∗
i ). Then, the conditional posterior distribution of s∗i is discrete such that:

Pr
(
s∗i = s | βββ,δδδ,σ2

u,σ
2
v

)
∝ τs

[
Φ

{
τ−1

s (RUis− θis)
}
−Φ

{
τ−1

s (RLis− θis)
}]

exp
(
−mis

2

)
, (A.33)

for s = 1, . . . ,2Ki−1 where Φ(·) is the cumulative density function of the standard normal distribution,

RUis and RLis denote the upper and lower limit of the interval for heterogeneity, Ris, given by Eqs (9)
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and (10), and (mis, θis, τ
2
s) are defined as follows:

(
mis, θis, τ

2
s

)
=



σ
−2
u σ

−2
v

(
yi− yik − zzz′iδδδ

)2

σ−2
u +σ

−2
v

,
σ−2

u (yi− yik)+σ−2
v zzz′iδδδ

σ−2
u +σ

−2
v

, {σ−2
u +σ

−2
v }−1

 ,
if s = 2k−1,(

σ−2
u (yi− ȳik)2 , zzz′iδδδ, σ

2
v

)
, if s = 2k.

(A.34)

Given s∗i = s, we generate w∗i from T NRis(θis, τ
2
s).

Step 6. Generate σ2
u given βββ, sss∗,www∗. It is straightforward to show that the full conditional posterior

distribution of σ2
u is the inverse gamma distribution IG( nu,1

2 ,
S u,1

2 ), where nu,1 = nu,0+2+n and

S u,1 = S u,0+
(
βββ−µµµβββ,0

)′
Σ−1
βββ,0

(
βββ−µµµβββ,0

)
+

(
yyy− yyy∗

)′ (yyy− yyy∗
)
. (A.35)

A.2 Full Conditional Distribution of g̃

We assume that ȳi1 is strictly positive. Then, the full conditional distribution of g̃ (= g−1) is derived

as follows. First, plug parameters multiplied by g (= g̃−1) into the posterior distribution (24). Because

the number of parameters to be accelerated is 4+d+n, the Jacobian of this transformation is g−(4+d+n).

Transforming g to g̃, the conditional probability density of g̃ is given by:

π
(
g̃ | βββ, sss∗,www∗,σv,σu

) ∝ g̃a0 exp
[
−1

2

{
a1g̃2−2a2g̃

}]
I
(
g̃ ∈ Rg̃

)
L(dg̃), (A.36)

where L(dg̃) = g̃−1dg̃ is the left-Haar measure, a0 = n+nu,0+nv,0, and

a1 = σ
−2
u

S u,0+µµµ
′
βββ,0ΣΣΣ

−1
βββ,0µµµβββ,0+

n∑
i=1

a2
4i

+σ−2
v

(
S v,0+µµµ

′
δδδ,0ΣΣΣ

−1
δδδ,0µµµδδδ,0

)
, (A.37)

a2 = σ
−2
u

βββ′ΣΣΣ−1
βββ,0µµµβββ,0+

n∑
i=1

a3ia4i

+σ−2
v δδδ
′ΣΣΣ−1
δδδ,0µµµδδδ,0, (A.38)
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(a3i,a4i) =


(
yik +w∗i , yi

)
, if s∗i = 2k−1,

(0, yi− ȳik) , if s∗i = 2k,
(A.39)

Rg̃ =

(
max

i

(
0,BL∗i

)
,min

i

(
BU∗i ,∞

))
. (A.40)

The BL∗i and BU∗i are the lower and upper bounds of the interval B∗i , which is given by:

B∗i =


(
β1 pik+β2qik+w∗i

ȳik
,
β1 pik+β2qik+w∗i

ȳi,k−1

)
, if s∗i = 2k−1,(

β1 pi,k+1+β2qi,k+1+w∗i
ȳik

,
β1 pik+β2qik+w∗i

ȳik

)
, if s∗i = 2k.

(A.41)

A.3 Proof for the One-step MH Algorithm

We prove that it suffices to implement a one-step MH algorithm using the initial value g̃ = 1 in our

GGS. By Theorem 2 of Liu and Sabatti (2000), it is adequate to prove that for all g̃, g̃′, g̃0 ∈ Γ̃ = {g̃ > 0 :

g̃(x) = g̃−1x},

Tζζζ
(
g̃, g̃′

)
L(dg̃′) = Tg̃−1

0 ζζζ

(
g̃g̃0, g̃′g̃0

)
L(dg̃′), (A.42)

where Tζζζ (g̃, g̃′) L(dg′) is the transition kernel of our Markov chain.

Let qζζζ(g̃′) denote our proposal density. Then, the transition kernel becomes Tζζζ (g̃, g̃′)= qζζζ(g̃′)α(g̃, g̃′)g̃′,

where the last g̃′ is the adjustment term for the left-Haar measure. It is obvious that the acceptance

probability α(g̃, g̃′) is invariant to the scale transformation of g̃0. Moreover, we have:

qζζζ(g̃′)g̃′ = σ−1
g̃′ φ

(
g̃′−µg̃′

σg̃′

)
I
(
g̃′ ∈ Rg̃

)
g̃′, (A.43)

qg̃−1
0 ζζζ

(g̃′g̃0)g̃′g̃0 =
(
g̃0σg̃′

)−1
φ

(
g̃′g̃0− g̃0µg̃′

g̃0σg̃′

)
I
(
g̃′g̃0 ∈ g̃0Rg̃

)
g̃′g̃0 = qζζζ(g̃′)g̃′, (A.44)

where φ(·) is the density function of the standard normal distribution. Thus, the transition kernel of the

Markov chain is invariant to transformation g̃, which completes the proof.
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