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Abstract

We examine the identification power that (Nash) equilibrium assumptions play in
conducting inference about parameters in some simple games. We focus on three static
games where we drop the Nash equilibrium assumption and instead use rationalizability
(Bernheim (1984) and Pearce (1984)) as the basis for strategic play. The first example
examines a bivariate discrete game with complete information of the kind studied in
entry models. The second example considers the incomplete information version of the
discrete bivariate game. Finally, the third example considers a first price auction with
independent private values. In each example, we study the inferential question of what
can be learned about the parameter of interest using a random sample of observations,
under level-k rationality where k is an integer ≥ 1. As k increases, our identified
set shrinks, limiting to the identified set under full rationality or rationalizability (as
k → ∞). This is related to the concept of higher order beliefs, which are incorporated
into the econometric analysis in our framework. We are then able to categorize what
can be learned about the parameters in a model under various maintained levels of
rationality, highlighting the role different assumptions play. We provide constructive
identification results that lead naturally to consistent estimators.
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1 Introduction

This paper examines the identification power of equilibrium in some simple games. In par-

ticular, we relax the assumption of Nash Equilibrium (NE) behavior and assume that players

are rational. Rationality posits that agents play strategies that are consistent with a set of

proper beliefs. The object of interest in these games is a parameter vector that parametrizes

payoff functions. We compare what can be learned about this vector from a random sample

of data, under a set of rationality assumptions, culminating with rationalizability, a con-

cept introduced jointly in the literature by Bernheim (1984) and Pearce (1984) . We find

that in static discrete games with complete information, the identified features of the games

with more than one level of rationality is similar to what one obtains with Nash behavior

assumption but allowing for multiple equilibria (including equilibria in mixed strategies). In

a bivariate game with incomplete information, if the game has a unique (Bayesian) Nash

Equilibrium, then there is convergence between the identified features with and without

equilibrium only when the level of rationality tends to infinity. When there is multiple

equilibria, the identified features of the game under rationalizability and equilibrium are

different: smaller identified sets (hence more information about the parameter of interest)

when equilibrium is imposed, but computationally easier to construct identification regions

when imposing rationalizability (no need to solve for fixed points). In the auction game we

study, the situation is different. We follow the work of Battigalli and Sinischalchi (2003)

where under some assumptions, given the valuations, rationalizability predicts only upper

bounds on the bids. We show how these bounds can be used to learn about learn about

the latent distribution of valuation. Another strategic assumptions in auctions resulting in

tighter bounds is the concept of P-dominance studied in Dekel and Wolinsky (2003).

Economists have observed that equilibrium play in noncooperative strategic environ-

ment is not necessary for rational behavior. Some can easily construct games where NE

strategy profiles are unreasonable while on the other hand, one can also find reasonable

strategy profiles that are not Nash. Restrictions once Nash behavior is dropped are based

typically on a set of “rationality” criteria. These criteria are enumerated in different papers

and under different strategic scenarios. This paper studies the effect of adopting a partic-

ular rationality criterion on learning about parameters of interests. We do not advocate

one type of strategic assumption over another, but simply explore one alternative to Nash

and see its effect on parameter inference. Thus, depending on the application, identification

of parameters of interest can certainly be studied under strategic assumptions other than

rationalizability. We provide such an example in this paper.
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Since every Nash profile is rational under our definition, dropping equilibrium play

complicates the identification problem because under rationality only, the set of predictions

is enlarged. As Pearce notes, “this indeterminacy is an accurate reflection of the difficult sit-

uation faced by players in a game” since logical guidelines and the rules of the game are not

sufficient for uniqueness of predicted behavior. Hence, it is interesting from the econometric

perspective to examine how the identified features of a particular game changes as weaker

assumptions on behavior are made.

We maintain that players in the game are rational where heuristically, we define rationality

as behavior that is consistent with an optimizing agent equipped with a proper set of beliefs

(or probability distributions) about the unknown actions of others. Rationality comes in

different levels or orders where a profile is first order rational (or rationalizable) if it is a best

response to some profile for the other players. This intersection of layers of rationality con-

stitutes rationalizable strategies. We study the identification question for level-k rationality

for k ≥ 1. When we study the identifying power of a game under a certain set of assumptions

on the strategic environment, we implicitly assume that all players in that game are abiding

exactly by these assumptions and playing exactly that game1.

Using equilibrium as a restriction to gain identifying power is well known in economics2.

The objective of the paper is to study the identification question in (simple) game-theoretic

models without the assumption of equilibrium– by focusing on the weaker concept of ra-

tionality –k-level rationality and its limit rationalizability– of strategies and beliefs. This

approach has two important advantages. First, it leads naturally to a well-defined concept

of levels of rationality which is attractive practically. Second, it can be adapted to a very

wide class of models without the need to introduce ad-hoc assumptions. Ultimately, interim

rationalizability allows us to do inference (to varying degrees) both on the structural pa-

rameters of a model (for example, the payoff parameters in a reduced-form game, or the

distribution of valuations in an auction), as well as on the properties of higher order beliefs

by the agents, which are incorporated into the econometric analysis. The features of this

hierarchy of beliefs will characterize what we refer to as the rationality-level of agents. In

addition, it is possible to also provide testable restrictions that can be used to find an upper

bound on the rationality level in a give data set.

Level-k thinking as an alternative to Nash equilibrium behavior has also been studied

in Stahl and Wilson (1995), Nagel (1995), Ho, Camerer, and Weigelt (1998), Costa-Gomes,

Crawford, and Broseta (2001), Costa-Gomes and Crawford (2006) and Crawford and Iriberri

(2007a). These models depart from equilibrium behavior by dropping the assumption that
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each player has a perfect model of others’ decisions and replacing it with the assumption

that such subjective models survive k rounds of iterated elimination of dominated decisions.

Thus, each player’s subjective model about others’ behavior is consistent with level-k interim

rationalizability in the sense of Bernheim (1984). Their identification strategy is to assume

the existence of a small number of pre-specified types, each of which is associated with a

very specific behavior (for example, a particular type of player could perform two mental

rounds of deletion of dominated strategies and best-respond to a uniform distribution over

the surviving actions). Using carefully designed experiments, these researchers have sought

to explain which type fits the observed choices the best. Our work differs fundamentally

from the aforementioned papers because we focus on identification based exclusively on the

bounds for conditional choice probability that result from k-steps of deletion of dominated

strategies in a semiparametric model. Even though such bounds are valid for a wide number

of “behavioral types”, we do not focus on any single one of them.ANDRES: can you clarify

this? In addition, we focus on situations where the researcher ignores how “rational” players

are and where other primitives of the game are also the object of interest: Payoff parameters

in discrete games, or the distribution of valuations in an auction. In an experimental data set,

the last set of objects are entirely under the control of the researcher, and strong parametric

assumptions are typically made about behavioral types.

In the first section, we review and define rational play in a noncooperative strategic

game. Here we mainly adapt the definition provided in Pearce. We then examine the

identification power of dropping Nash behavior in some commonly studied games in empirical

economics. In section 3, we consider discrete static games of complete information. This

type of game is widely used in the empirical literature on (static) entry games with complete

information and under Nash equilibrium (See Bjorn and Vuong (1985), Bresnahan and Reiss

(1991), Berry (1994), Tamer (2003), Andrews, Berry, and Jia (2003), Ciliberto and Tamer

(2003), and Bajari, Hong, and Ryan (2005) among others). Here, we find that in the 2 × 2

game with level-2 rationality, the outcomes of the game coincide with Nash, and hence

econometric restrictions are the same. Section 4 considers static games with incomplete

information. Empirical frameworks for these games are studied in Aradillas-Lopez (2005),

Aguiregabiria and Mira (2004), Seim (2002), Pakes, Porter, Ho, and Ishii (2005), Berry

and Tamer (2006) among others. Characterization of rationalizability in the incomplete

information game is closely related to the higher-order belief analysis in the global games

literature (see Morris and Shin (2003)) and to other recently developed concepts such as those

in Dekel, Fudenberg, and Morris (2007) and Dekel, Fudenberg, and Levine (2004). Here, we
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show that level-k rationality implies restrictions on player beliefs in the 2×2 game that lead

to simple restrictions that can be exploited in identification. As k increases, an iterative

elimination procedure restricts the size of the allowable beliefs which map into stronger

restrictions that can be used for identification. If the game admits a unique equilibrium,

the restrictions of the model converge towards Nash restrictions as the level of rationality

k increases. With multiple equilibria, the iterative procedure converges to sets of beliefs

that contain both the “large” and ”small” equilibria. In particular, studying identification

in these settings is simple since one does not need to solve for fixed points, but to simply

iterate the beliefs towards the predetermined level of rationality k. In section 5 we examine a

first price independent auction game where we follow the work of Battigalli and Sinischalchi

(2003). Here, for any order k, we are only able to bound the valuation from above. Finally,

Section 6 concludes.

2 Nash Equilibrium and Rationality

In noncooperative strategic environment, optimizing agents maximize a utility function that

depends on what their opponents do. In simultaneous games, agents attempt to predict

what their opponents will play, and then play accordingly. Nash behavior posits that players’

expectations of what others are doing are mutually consistent, and so a strategy profile is

Nash if no player has an incentive to change their strategy given what the other agents are

playing. This Nash behavior makes an implicit assumption on players’ expectations. But,

players “are not compelled by deductive logic” (Bernheim) to play Nash. In this paper,

we examine the effect of assuming Nash behavior on identification by comparing restrictions

under Nash with ones obtained under rationality in the sense of Bernheim and Pearce. Below,

we follow Pearce’s framework and first maintain the following assumptions on behavior:

• Players use proper subjective probability distribution, or use the axioms of Savage,

when analyzing uncertain events.

• Players are expected utility maximizers.

• Rules and structure of the game are common knowledge.

We next describe heuristically what is meant by rationalizable strategies. Precise definitions

are given in Pearce (1984) for example.
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• We say that a strategy profile for player i (which can be a mixed strategy) is domi-

nated if there exists another strategy for that player that does better no matter what

other agents are playing.

• Given a profile of strategies for all players, a strategy for player i is a best response

if that strategy does better for that player than any other strategy given that profile.

To define rationality, we make use of the following notations. Let Ri(0) be the set of all

(possibly mixed) strategies that player i can play and R−i(0) is the set of all strategies for

players other than i. Then, heuristically:

• Level-1 rational strategies for player i are strategy profiles si ∈ Ri(0) such that

there exists a strategy profile for other players in R−i(0) for which si is a best response.

The set of level-1 strategies for player i is Ri(1).

• Level-2 rational strategies for player i are strategy profiles si ∈ Ri(0) such that

there exists a strategy profile for other players in R−i(1) for which si is a best response.

• Level-t rational strategies: Defined recursively from level 1.

Notice that by construction, Ri(1) ⊆ Ri(0) and Ri(t) ⊆ Ri(t − 1). Finally, rationalizable

strategies are ones that lie in the intersection of the R’s as t increases to infinity. Moreover,

one can show (See Pearce) that there exists a finite k such that for Ri(t) = Ri(k) for all

t ≥ k.

Rationality in these settings is equivalent to best response, in that, a strategy is rational

for a player if it is a best response to some strategy profile by other players. If we iterate

this further, we arrive at the set of rationalizable strategies. Pearce provided properties of

the rationalizable set. For example, NE profiles are always included in this set and this set

contains at least one profile in pure strategies.
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3 Bivariate Discrete Game with Complete Information

Consider the following bivariate discrete 0/1 game where tp is the payoff that player p ob-

tains by playing 1 when player −p is playing 0. We have parameters α1 and α2 that are of

interest. The econometrician does not observe t1 or t2 and is interested in learning about

the α’s and the joint distribution of (t1, t2). Assume also, as in entry games, that the α’s

are negative. In this example and the next, we assume that one has access to a random

Table 1: Bivariate Discrete Game

a2 = 0 a2 = 1

a1 = 0 0,0 0,t2

a1 = 1 t1,0 t1 + α1, t2 + α2

sample of observations (y1i, y2i)
N
i=1 which represent for example market structures in a set of

N independent markets. To learn about the parameters, we map the observed distribution

of the data (the choice probabilities) to the distribution (or set of distributions) predicted

by the model. Since this is a game of complete information, players observe all the payoff

relevant information. In particular, in the first round of rationality, player 1 will play 1 if

t1 + α1 ≥ 0 since this will be a dominant strategy. In addition, if t1 is negative, player 1

will play 0. However, when t1 + α1 ≤ 0 ≤ t1, both actions 1 and 0 are level-1 rational:

action 1 is rational since it can be a best response to player 2 playing 0, while action 0 is

a best response to player 2 playing 1. The set R(1) is summarized in Figure 1 below. For

example, consider the upper right hand corner. For values of t1 and t2 lying there, playing

0 is not a best response for either player. Hence, (1, 1) is the unique level-1 rationalizable

strategy (which is also the unique NE). Consider now the middle region on the right hand

side, i.e., (t1, t2) ∈ [−α1,∞)× [0,−α2]. In level-1 rationality, 0 is not a best reply for player

1, but 2 can play either 1 or 0 : 1 is a best reply when 1 plays 0, and 0 is a best reply for

player 2 when 1 plays 1. However, in the next round of rational play, given that player 2

now believes that player 1 will play 1 with probability 1, then player 2’s response is to play

0. Hence R(1) = {{1}, {0, 1}} while the rationalizable set reduces to the outcome (1, 0).

Here, R(k) = R(2) = {{1}, {0}} for all k ≥ 2. In the middle square, we see that the game

provides no observable restrictions: any outcome can be potentially observable since both

strategies are rational at any level of rationality. Notice also that in this game, the set of

rationalizable strategies is the set of profiles that are undominated. This is a property of
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R(k) = {1, 1}
for all k ≥ 1

↓↓↓
R(k) = {{1}, {0}} for k ≥ 2

R(1) = {{1}, {1, 0}}

for all k ≥ 1
R(k) = {{0, 1}, {0, 1}}

R(1) = {{0, 1}, {0}}

↓↓↓

R(k) = {{1}, {0}} for k ≥ 2

R(k) = {{0}, {0}}

for all k ≥ 1

R(k) = {{0}, {1}}

for all k ≥ 1

−α1

−α2

t1

t2

Figure 1: Rationalizable Profiles in a Bivariate Game with Complete Information

bivariate binary games.

3.1 Infence with level-k rationality:

A random sample of observations allows us to obtain a consistent estimator of the choice

probabilities (or the data). The object of interest here is θ = (α1, α2, F (., .)) where F (., .) is

the joint distribution of (t1, t2). One interesting approach to conduct inference on the sharp

set is to assume that both t1 and t2 are discrete random variables with identical support on

s1, . . . , sK such that P (t1 = si; t2 = sj) = pij ≥ 0 for i, j ∈ {1, . . . , k} with
∑

i,j pij = 1.

Hence, we make inference on on the set of probabilities (pij, i, j ≤ k) and (α1, α2). We

highlight this below for level 2 rationality. In particular, we say that

θ = ((pij), α1, α2) ∈ ΘI
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if and only if:

P11 =
∑

i,j

pij

(
1[si ≥ −α1; sj ≥ −α2] + l

(1,1)
ij 1[0 ≤ si ≤ −α1; 0 ≤ sj ≤ −α2]

)

P00 =
∑

i,j

pij

(
1[si ≤ 0; sj ≤ 0] + l

(0,0)
ij 1[0 ≤ si ≤ −α1; 0 ≤ sj ≤ −α2]

)

P10 =
∑

i,j

pij

(
1[si ≥ 0; sj ≤ 0] + 1[si ≥ −α1; 0 ≤ sj ≤ −α2] + l

(1,0)
ij 1[0 ≤ si ≤ −α1; 0 ≤ sj ≤ −α2]

)

P01 =
∑

i,j

pij

(
1[si ≤ 0; sj ≥ 0] + 1[0 ≤ si ≤ −α1; sj ≥ −α2] + l

(0,1)
ij 1[0 ≤ si ≤ −α1; 0 ≤ sj ≤ −α2]

)

for some (l
(1,1)
ij , l

(0,0)
ij , l

(0,1)
ij , l

(1,0)
ij ) ≥ 0 and l

(1,1)
ij + l

(0,0)
ij + l

(0,1)
ij + l

(1,0)
ij = 1 for all i, j ≤ k. One

can think of the l’s as the “selection mechanisms” that pick an outcome in the region where

the model predicts multiple outcomes. We are treating the support points as known, but this

is without loss of generality since those too can be made part of θ. The above equalities (and

inequalities), for a given θ, are similar to first order conditions from a linear programming

problem and hence can be solved fast using linear programming algorithms. In particular,

Consider the objective function in (3.1) below. Note first that Q(θ) ≤ 0 for all θ in the

parameter space. And,

θ ∈ ΘI

if and only if Q(θ) = 0.

Q(θ) = max
vi,...,v8,(l

(1,1)
ij

,l
(0,0)
ij

,l
(0,1)
ij

,l
(1,0)
ij

)

−(v1 + . . . , +v8) s.t.

P11 −
∑

i,j

pij

(
1[si ≥ −α1; sj ≥ −α2] + l

(1,1)
ij 1[0 ≤ si ≤ −α1; 0 ≤ sj ≤ −α2]

)
= v1 − v2

P00 −
∑

i,j

pij

(
1[si ≤ 0; sj ≤ 0] + l

(0,0)
ij 1[0 ≤ si ≤ −α1; 0 ≤ sj ≤ −α2]

)
= v3 − v4

P10 −
∑

i,j

pij

(
1[si ≥ 0; sj ≤ 0] + 1[si ≥ −α1; 0 ≤ sj ≤ −α2] + l

(1,0)
ij 1[0 ≤ si ≤ −α1; 0 ≤ sj ≤ −α2]

)
= v5 − v6

P01 −
∑

i,j

pij

(
1[si ≤ 0; sj ≥ 0] + 1[0 ≤ si ≤ −α1; sj ≥ −α2] + l

(0,1)
ij 1[0 ≤ si ≤ −α1; 0 ≤ sj ≤ −α2]

)
= v7 − v8

vi ≥ 0; (l
(1,1)
ij , l

(0,0)
ij , l

(0,1)
ij , l

(1,0)
ij ) ≥ 0; l

(1,1)
ij + l

(0,0)
ij + l

(0,1)
ij + l

(1,0)
ij = 1 for all 1 ≤ i, j ≤ k

(3.1)

First, note that for any θ, the program is feasible: for example, set (l
(1,1)
ij , l

(0,0)
ij , l

(0,1)
ij , l

(1,0)
ij ) = 0

and then set v1 = P11 −
∑

i,j pij1[si ≥ −α1; sj ≥ −α2] and v2 = 0 if P11 −
∑

i,j pij1[si ≥

−α1; sj ≥ −α2] ≥ 0, otherwise set v2 = −(P11 −
∑

i,j pij1[si ≥ −α1; sj ≥ −α2]) and v1 = 0

and similarly for the rest. Moreover, θ ∈ ΘI if and only if Q(θ) = 0. One can collect all

the parameter values for which the above objective function is equal to zero (or approx-

imately equal to zero) A similar linear programming procedure was used in Honoré and
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Tamer (2005). The sampling variation comes from having to replace the choice probabili-

ties (P11, P12, P21, P22) with their sample analogs which would result in a sample objective

function Qn(.) that can be used to conduct inference.

More generally, and without making support assumptions, a practical way to conduct

inference if assumes one level of rationality say, is to use an implication of the model. In

particular, under k = 1 rationality, the statistical structure of the model is one of moment

inequalities:

Pr(t1 ≥ −α1; t2 ≥ −α2)≤ P (1, 1) ≤Pr(t1 ≥ 0; t2 ≥ 0)

Pr(t1 ≤ 0; t2 ≤ 0)≤ P (0, 0) ≤Pr(t1 ≤ −α1; t2 ≤ α2)

Pr(t1 ≥ −α1; t2 ≤ 0)≤ P (1, 0) ≤Pr(t1 ≥ 0; t2 ≤ −α2)

Pr(t1 ≤ 0; t2 ≥ −α2)≤ P (0, 1) ≤Pr(t1 ≤ −α1; t2 ≥ 0)

The above inequalities do not exploit all the information and hence the identified set based

on these inequalities is not sharp3. However, these inequalities based moment conditions

are simple to use and can be generalized to large games. Heuristically then, the model

identifies, by definition, the set of parameters ΘI such that the above inequalities are satisfied.

Moreover, we say that the model point identifies a unique θ if the set ΘI is a singleton.

In the next figure, we provide the mapping between the predictions of the game and the

observed data under Nash and level-k rationality. The observable implication of Nash is

(0,0)
(1,1)
(1,0)
(0,1)

(1, 1); (1, 0) → (1, 0)
(0,0)
(1,1)
(1,0)
(0,1)

(1,1)

(1,0)

(0, 0); (1, 0)
↓↓

(1, 0)

(1,0)

(1,0)(1,0)(0,0)(0,0)

(0,1)
(0, 1); (1, 1)

↓↓

(0, 1)

(0,1)

(0, 1); (0, 0) → ((0, 1) (0,1)

(0,1) (1,1)

Observable Implication of Nash EquilibriumObservable Implication of Rationalizability

Figure 2: Observable Implications of Equilibrium vs Rationality

different depending on whether we allow for mixed strategies. In particular, without allowing

for mixed strategies, in the middle square of the Nash figure, the only observable implication
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is (1, 0) and (0, 1). However, it reverts to all outcomes once one consider the mixed strategy

equilibrium.

To a get an idea of the identification gains when we assume rationality vs equilibrium, we

simulated a stylized version of the above game in the case where ti is standard normal for

i = 1, 2 and the only object of interest is the vector (α1, α2). We compare the identified set

of the above game under k = 1 rationality and NE when we only consider pure strategies.

We see from Figure 3 that there is identifying power in assuming Nash equilibrium. In

Figure 3: Identification Set under Nash and 1-level Rationality

α
1

α 2

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

α
1

α 2

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Above we see the identified regions for (α1, α2) under k = 1-rationality (left display) and Nash (right display).

We set in the underlying model (α1, α2) = (−.5,−.5) (The model was simulated assuming Nash with (0, 1) selected

with probability one in regions of multiplicity.) Notice that on the left, the model only places upper bounds on the

alphas. Under Nash on the other hand, (α1, α2) are constrained to lie a much smaller set (the inner “circle”).

particular, under Nash, the identified set is a somehow tight “circle” around the simulated

truth while under rationality, the model only provides upper bounds on the alpha’s. But, if

we add exogenous variations in the profits (X’s), the identified region under rationality will

shrink. The next section examines the identifying power of the same game under incomplete

information.

4 Discrete Game with Incomplete Information

Consider now the discrete game presented in Table 1 above but under the assumptions that

player 1 (2) does not observe t2 (t1) or that the signals are private information. We will
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denote player p ∈ {1, 2}’s opponent to be −p. Both players hold beliefs’ about anothers’

type and these beliefs can be summarized by a subjective distribution function. For player

1 of type t1, let the space of beliefs about 2’s probability of entry be Pt1 ≡ Pr(a2 = 1|t1)

which can depend on t1. Given belief Pt1 , the expected utility function of player 1 is

U(a1, Pt1) =

{
t1 + α1Pt1 if a1 = 1

0 otherwise

Similarly for player 2 we have

U(a2, Pt2) =

{
t2 + α1Pt2(a1 = 1) if a2 = 1

0 otherwise

Again, we assume here both α1 and α2 are negative.

4.1 Identification without assumptions on beliefs: level-1 ratio-

nality:

In the first round of rationality, we know that for any belief function, or without making any

common prior assumptions, the following holds:

t1 + α1 ≥ 0 =⇒ U(1, Pt1) = t1 + α1Pt1 ≥ 0 ∀Pt1 ∈ [0, 1]

t1 ≤ 0 =⇒ U(1, Pt1) = t1 + α1Pt1 ≤ 0 ∀Pt1 ∈ [0, 1]
(4.2)

which implies that

t1 + α1 ≥ 0 =⇒ a1 = 1

t1 ≤ 0 =⇒ a1 = 0

This is common knowledge among the players. Now, let 0 ≤ t1 ≤ −α1. For a player

that is rational of order one, there exists well defined beliefs that rationalizes either 1 or

0. Hence, when 0 ≤ t1 ≤ −α1, both a1 = 1 and a1 = 0 are rationalizable. So, the

implication of the game are summarized in Figure 4 below. Notice here that the (t1, t2)

space is divided into 9 regions: 4 regions where the outcome is unique, 4 regions with 2

potentially observable outcomes, and the middle square where any outcome is potentially

observed. To make inference based on this model, one needs to map these regions into

predicted choice probabilities. To obtain the sharp set of parameters that is identified by

the model, one can supplement this model with consistent “selection rules” that specifies

in regions of multiplicity, a well defined probability of observing the various outcomes (this

would be a function of of both t1 and t2). Another practical approach to inference in these

12
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Figure 4: Observable Implications of Level-1 Rationality

settings is to exploit implication of the model, mainly that these selection function are

probabilities and hence bounded between zero and one. These implications will imply the

following restrictions in terms of moment inequalities1:

Result 1 For the game with incomplete information, let the players be rational with order

1. Then the model implies the following predictions on choice probabilities:

P (t1 + α1 ≥ 0; t2 + α2 ≥ 0) ≤ P (1, 1) ≤ P (t1 ≥ 0; t2 ≥ 0)

P (t1 ≤ 0; t2 ≤ 0) ≤ P (0, 0) ≤ P (t1 ≤ −α1; t2 ≤ −α2)

P (t1 ≤ 0; t2 ≥ −α2) ≤ P (0, 1) ≤ P (t1 ≤ −α1; t2 ≥ 0)

P (t1 ≥ −α1; t2 ≤ 0) ≤ P (1, 0) ≤ P (t1 ≥ 0; t2 ≤ 0)

(4.3)

The above inequalities can be exploited in a similar way as we did in the previous section

to construct the identified set. The latter, ΘI , is the set of parameters for which the above

inequalities in (4.3) are satisfied.

Now, we add another round of rationality. To do that, the beliefs of the players, though

not required to be “correct”, play a role. It matters what each player believes the other’s

likelihood of playing 1 or 0 is. To complete the description of this strategic situation, we

make a common prior assumption. We expand on this below.

1Again, here, there are cross equation restrictions that can be used. So, ignoring these will result in larger

identified sets.
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4.2 Identification with “level-k” (k > 1) Rationalizable Beliefs

Here, we study the identification question with higher order rationality. As a reminder, player

p with type tp, though does not observe t−p, but treats the latter as a random variable from

a known (conditional) distribution Ptp. The form of this distribution is common knowledge

to both players (i.e., we maintain a joint distribution on the types and this joint distribution

is common knowledge). This is the common prior assumption. We also allow that this joint

distribution be conditional on some information set for player p, call it Ip (which includes

tp). We will consider strategies for player p that are threshold functions of tp:

Yp = 1l{tp ≥ µp} for p = 1, 2, (4.4)

Therefore, player p forms subjective beliefs about µ−p that can be summarized by a proba-

bility distribution for µ−p given Ip. These beliefs are derived as part of a solution concept.

For example they include BNE beliefs as a special case (in which case all players know those

equilibrium beliefs to be correct). Here, let Ĝ1(µ2|I1) denote Player 1’s subjective distri-

bution function for µ2 given I1, and define Ĝ2(µ1|I2) analogously for player 2. A strategy

by player p is rationalizable if it is the best response (in the expected-utility sense) given

some beliefs Ĝp(µ−p|Ip) that assign zero probability mass to strictly dominated strategies

by player −p. A rationalizable strategy by player p is described by

Yp = 1l
{

tp + αp

∫

S( bGp)

E
[
1l{t−p ≥ µ}

∣∣Ip, µ
]
dĜp(µ|Ip) ≥ 0

}
, (4.5)

where the support S(Ĝp) excludes values of µ that result in strictly dominated strategies

within the class (4.4). Note that the subset of rationalizable strategies within the class (4.4)

are of the form µp = −αp

∫
S( bGp)

E
[
1l{t−p ≥ µ}

∣∣Ip, µ
]
dĜp(µ|Ip). In this setting, rationalizabil-

ity requires expected utility maximization for a given set of beliefs, but it does not require

those beliefs to be correct. It only imposes the condition that S(Ĝp) exclude values of µ−p

that “do not make sense” or are dominated. We eliminate such values by iterated deletion

of dominated strategies.

Again, we maintain that the signs of the strategic-interaction parameters (α1, α2) are

known. Specifically, suppose αp ≤ 0. Then, repeating arguments from the previous section

on k = 1-rationalizable outcomes, we see looking at (4.5) that we must have (event-wise

comparisons):

1l{tp + αp ≥ 0} ≤ 1l{Yp = 1} and 1l{tp < 0} ≤ 1l{Yp = 0}

14



Decision rules that do not satisfy these conditions are strictly dominated for all possible be-

liefs. Therefore, the subset of strategies within the class (4.4) that are not strictly dominated

must satisfy Pr(tp + αp ≥ 0) ≤ Pr(tp ≥ µp) ≤ Pr(tp ≥ 0), or equivalently, µp ∈ [0,−αp]. All

other values of µp correspond to dominated strategies. We refer, in this set-up, to the subset

of strategies that satisfy µp ∈ [0,−αp] as level-1 rationalizable strategies. Note, as before,

that these µ’s do NOT involve the common prior distributions.

Players are level-2 rational if it is common knowledge that they are level-1 rational and

they use this information rationally. Level-2 rationalizable beliefs by player p must assign

zero probability mass to values µ−p /∈ [0,−αp]. A strategy is level-2 rationalizable if it can

be justified by level-2 rationalizable beliefs. That is, a strategy Yp = 1l{tp ≥ µp} is level-2

rationalizable if

µp = −αp

∫ −α−p

0

E
[
1l{t−p ≥ µ}

∣∣Ip, µ
]
dĜp(µ|Ip)

where player p’s beliefs Ĝp(·|Ip) satisfy Ĝp(0|Ip) = 0 and Ĝp(−α−p|Ip) = 1, i.e., those

beliefs give zero weight to level-1 dominated strategies. Moreover, the expectation within

the integral is taken with respect to the common prior conditional on Ip which includes

player p’s type. Hence, exploiting this monotonicity, it is easy to see that for an outside

observer, the subset of level-2 rationalizable strategies must satisfy

µ1 ∈
[
−α1EP1

[
1l{t2 ≥ −α2}|I1

]
,−α1EP1

[
1l{t2 ≥ 0}|I1

]
=

[
−α1

(
1 − Pt1(−α2)

)
,−α1

(
1 − Pt1(0)

)]

and

µ2 ∈
[
−α2EP2

[
1l{t1 ≥ −α1}|I2

]
,−α2EP2

[
1l{t1 ≥ 0}|I2

]
=

[
−α2

(
1 − Pt2(−α1)

)
,−α2

(
1 − Pt2(0)

)]

By induction, it is easy to prove the following claim.

Claim 1 If αp ≤ 0, a strategy of the type Yp = 1l{tp ≥ µp} is level-k rationalizable if and

only if µ1 and µ2 satisfy

µp ∈
[
0,−α−p

]
≡

[
µL

p,1, µ
U
p,1], for k = 1 and p ∈ {1, 2}.

µ1 ∈
[
−α1E

[
1l{t2 ≥ µU

2,k−1}|I1

]
,−α1E

[
1l{t2 ≥ µL

2,k−1}|I1

]]
≡

[
µL

1,k, µ
U
1,k

]
, for k > 1

µ2 ∈
[
−α2E

[
1l{t1 ≥ µU

1,k−1}|I2

]
,−α2E

[
1l{t1 ≥ µL

1,k−1}|I2

]]
≡

[
µL

2,k, µ
U
2,k

]
, for k > 1

(4.6)

Remark 1 Any k-rational player is also k′-rational for any 1 ≤ k′ ≤ k − 1. Also, for

p ∈ {1, 2}, with probability one, we have
[
µL

p,k, µ
U
p,k

]
⊆

[
µL

p,k−1, µ
U
p,k−1

]
for any k > 1. Note

also that these bounds are a function of Ip, the information player p conditions his beliefs

on.
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The two statements in Remark 1 follow because conditional on Ip, the support S(Ĝp) of a

k-level rational player is contained in that of a k − 1-level rational player. In fact, if there

is a unique BNE (conditional on Ip), then S(Ĝp) would collapse to the singleton given by

BNE beliefs as k → ∞. Whenever it is warranted, we will clarify whether a k-level rational

player is “at most k-level rational” or “at least k-level rational”. For inference based on

level-2 rationality, we can use inequalities similar to (4.3) above to map the observed choice

probabilities to the predicted ones. In particular, we can use the thresholds from Claim 1

above to construct a map between the model and the observable outcomes using (4.4) above.

This is illustrated in Figure 4.2 where we see that as one moves from level 1 to level 2, the

middle square shrinks. In the next section, we parametrize the model to allow for observable

t1

t2

(1,1)

(0,1) (1,0)

(0,1)

(0,0) (0,0), (1,0) (1,0)

(1,1)

(1,0)
(1,1)
(0,1)
(0,0)

(−α1(1 − Pt1 (−0)),−α2(1 − Pt2 (0))

−α1

(0,1)

(1,1), (1,0)

−α2

Figure 5: Observable Implications of Level-2 Rationality

heterogeneity and provide sufficient point identification conditions.

4.3 Constructive Identification in a Parametric Model

From now on, we will express tp as tp = X ′
pβp − εp, where Xp is observable to the econo-

metrician, εp is not, and βp must be estimated. Throughout, we will assume (ε1, ε2) to be

continuously distributed, with scale normalized to one and a distribution of known func-

tional form that depends on an unknown parameter that is part of the parameter vector of

interest. For simplicity, we assume that ε1 is independent of ε2 where each has a CDF Hp(.)

for p = 1, 2. We will provide first an objective function that can be used to construct the
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identified set. This function will depend on the level k of rationality that the econometrician

assumes ex-ante. We then discuss the identification of k. After that, we provide a set of

sufficient conditions that will guarantee point identification under some assumptions. These

point identification results provide insights into the kind of “variation” that is needed to

shrink the identified set to a point.

As in the previous section, we make a common prior assumption. This assumption is

only needed to compute bounds on beliefs for levels of rationality k that are strictly larger

than 1. We will assume that player p observes εp and knows that ε−p is a random variable

with distribution H−p. In principle, one can allow for correlated types, i.e., that H−p is a

function of p (this would accommodate strategic situations in which if one observes a “large”

ε, then one thinks that his/her opponents’ ε is also large.) But, we abstract from this

for simplicity. We also implicitly assume that the econometrician knows the common prior

distribution. Given this setup, we can iteratively construct bounds on the beliefs which will

allow us to do inference.

Iterative construction of beliefs: We construct sets of consistent beliefs iteratively as

follows. Let I be the information set for both players that we assume here is also observed

by the econometrician. Typically, I contains the set of regressors X. Let πL
−p(θ|k = 1, I) = 0

and πU
−p(θ|k = 1, I) = 1. For k > 1, let

πL
1 (θ|k, I) = H1

(
X ′

1β1 + α1π
U
2 (θ|k-1, I)

)
; πU

1 (θ|k, I) = H1

(
X ′

1β1 + α1π
L
2 (θ|k-1, I)

)

πL
2 (θ|k, I) = H2

(
X ′

2β2 + α2π
U
1 (θ|k-1, I)

)
; πU

2 (θ|k, I) = H2

(
X ′

2β2 + α2π
L
1 (θ|k-1, I)

) (4.7)

where πL
−p(θ|k, I) and πU

−p(θ|k, I) are the lower and upper bounds for level-k rationalizable

beliefs by player p for Pr(Y−p|I). In the case where we want to allow for correlation in types,

then, the belief function for player p will depend on εp which would be part of a player specific

information set and Hp would be the conditional CDF of εp|ε−p. The econometrician does

not observe either of the ε’s. By induction, it is easy to show that

[
πL
−p(θ|k; I), πU

−p(θ|k; I)
]
⊆

[
πL
−p(θ|k-1; I), πU

−p(θ|k-1; I)
]

w.p.1 in S(I). (4.8)

It also holds even if players condition on different information sets. Figure 6 depicts this case

for a fixed realization I, a given parameter vector θ and k ∈ {1, 2, 3, 4, 5}. The left display

in Figure 6 provides the belief iterations with a unique BNE while the right display shows

the iterations with multiple BNE. Notice that when the game has a unique BNE, then as k

17



increases to infinity, the rationalizable beliefs will converge to the equilibrium ones. On the

other hand, if the game has multiple BNE, then as k → ∞, the beliefs converge to the outer

equilibria as can be seen in the rhs display of Figure 6.

Figure 6: Rationalizable Beliefs for k = 2, 3, 4 and 5 :

 k=4  k=3 

  k=3 

  k=4 

  k=5 

 k=5 

=E[H1(X1’ 1+

=E[H2(X2’ 2 ]

  k=2 

  k=2 

 k=4  k=3 

  k=3 

  k=4 

  k=5 

 k=5 

=E[H1(X1’ 1+

=E[H2(X2’ 2 ]

 k=2 

  k=2 

Bounds for level-k rationalizable beliefs when I1 = I2 ≡ I (players condition on the same set of

signals). Vertical axis shows level-k rationalizable bounds for player 1’s beliefs about Pr(Y2 = 1|I).

Horizontal axis shows the equivalent objects for player 2. The graphs correspond to a particular

realization I and a given parameter value θ.

Player p is level-k rational if and only if with probability one2

1l
{
X ′

pβp + αpπ
U
−p(θ|k; I) ≥ εp

}
≤ 1l

{
Yp = 1

}
≤ 1l

{
X ′

pβp + αpπ
L
−p(θ|k; I) ≥ εp

}
(4.9)

This is is exactly the map that we can use to conduct inference. Let Wp ≡ (Xp, I) and fix

any k. For two vectors of scalars a, b ∈ Rdim(Wp) let

Λp

(
θ
∣∣a, b; k

)
=

E

[(
1 − 1l

{
Hp

(
X ′

pβp + αpπ
U
−p(θ|k; I)

)
≤ Pr(Yp = 1|Wp) ≤ Hp

(
X ′

pβp + αpπ
L
−p(θ|k; I)

)})

× 1l
{
a ≤ Wp ≤ b

}]
;

Γp

(
θ
∣∣k

)
=

∫ ∫
Λp

(
θ
∣∣a, b; k

)
dFWp

(a)dFWp
(b); Γ

(
θ
∣∣k

)
=

(
Γ1

(
θ
∣∣k

)
, Γ2

(
θ
∣∣k

))′

2Recall that we are studying the case αp ≤ 0 for p = 1, 2.
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(4.10)

where the inequality a ≤ Wp ≤ b is element-wise and Wp ∼ FWp
(·). Take any conformable,

positive definite matrix Ω and define

Θ(k) =
{
θ ∈ argmin

θ

Q(θ|k) = argmin
θ

Γ
(
θ
∣∣k

)′
ΩΓ

(
θ
∣∣k

)}
(4.11)

By construction, Θ(k + 1) ⊆ Θ(k) for all k. If all we know is that all players are level-k

rational, Θ(k) is the identified set. Methods meant for set inference can be used to construct

a sample estimator of Θ(k) based on a random sample. Notice also that as compared with

the Bayesian Nash solution, here one does not need to solve a fixed point map to obtain

the equilibrium. Rather, rationalizability requires restrictions on player beliefs which can be

implemented iteratively. We formally show below that Θ(k) contains the set of BNE for any

k > 0.

Remark 2 Note that when k = 1, one does not need to specify the common prior assump-

tion since beliefs here play no role. Hence, results will be robust to this assumption. However,

depending on the magnitude of the αp’s, the bounds on choice probabilities predicted by such

a model (where k = 1) can be wide.

Any player who is level-k rational is also level-k’ rational for all 1 ≤ k′ ≤ k − 1. As we pointed

out above, an immediate consequence is that the identified sets satisfy Θ(k + 1) ⊆ Θ(k) for

all k. A question of interest is how to do sharper inference based on level-k rationality by

exploiting the features of the lower-level bounds. Specifically, if all players in the population

are level-k rational, the structural parameter θ determines not only the features of the level-

k bounds, but also how they relate to the features of the level-k’ bounds for each k′ ≤ k.

Exploiting this fact to generate a sharper identified set based on level-k rationality is a highly

relevant question (see also Footnote 3).

On the rationality level k: Even though we do not explicitly study estimation and

inference in this paper, the method above is meant to serve as the basis for a consistent

estimate of the identified set Θ(k) for a given k. However, it is possible to learn something

about k from a random sample. Specifically, suppose there exists k0 such that players are

at most level-k0 rational. This describes a situation where the level-k0 bounds hold with

probability one, but the level-(k0 + 1) bounds are violated with positive probability in the

population. If we assume k0 ≥ 1 (the only interesting case), one can start with k = 1 and
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construct Θ(1) (as defined in 4.11). Next, for any k ≥ 2 define

Q(k) = min
θ∈Θ(1)

Q(θ|k), (4.12)

where Q(θ|k) is as defined in (4.11). Then,

(i) Q(k) = 0 for all k ≤ k0. However, Q(k) = 0 does not imply k ≤ k0.

(ii) Q(k) > 0 implies k > k0.

Suppose that different observations in the data set correspond to a game with a different level

of rationality, then if Q(k) > 0 and Q(k−1) = 0, one would reject the hypothesis3 that all the

population is at least level k rational. If we assume ex-ante that k0 ≥ k > 1 we could simply

replace Θ(1) with Θ(k) in the definition of Q(k) in Equation (4.12). Alternatively, in settings

where at least a subset of the structural parameter θ is known (e.g, experiments), we could

evaluate if players are at least level-k0 rational by testing whether or not θ0 ∈ Θ(k0) (the

identified set for level-k0 rationality). Otherwise, a test that would fail to reject Θ(k0+1) = ∅

would indicate that players are at most level-k0 rational.

4.4 Sufficient point identification conditions

In this section, we study the problem of point identification of the parameter of interests

in the game above. In particular, we provide sufficient point identification conditions for

level-1 rational play and for levels k > 1. These conditions can provide insights about what

is required to shrink the identified set to a point (or a vector). Here, we allow for the

information sets to be different, i.e., that player p conditions on Ip when making decisions

and allow for exclusion restrictions where I1 6= I2. We start with sufficient conditions for

level 1 rationalizability.

4.4.1 Identification with level-1 Rationalizability

Let θp = (βp, αp) and θ = (θ1, θ2), we have the following identification result.

Theorem 1 Suppose Xp has full rank for p = 1, 2 and let X ≡ (X1, X2), assume αp < 0 for

p = 1, 2 and let Θ denote the parameter space. Let there be a random sample of size N from

the game above. Consider the following condition.

3Strictly speaking, this would be a joint test of the rationality hypothesis and all other maintained

assumptions.
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A1.i For each player p, there exists a continuously distributed Xℓ,p ∈ Xp with nonzero coef-

ficient βℓ,p and unbounded support conditional on X \Xℓ,p such that for any c ∈ (0, 1),

b 6= 0 and q ∈ Rdim(X
−ℓ,p), there exists Cb,q,m > 0 such that

Pr(εp ≤ bXℓ,p + q′X−ℓ,p|X) > m ∀ Xℓ,p : sign(b) · Xℓ,p > Cb,q,m. (4.13)

A.1-ii For p = 1, 2, let Xd,p denote the regressors that have bounded support but are not

constant. Suppose Θ is such that for any βd,p, β̃d,p ∈ Θ with β̃d,p 6= βd,p and for any

αp ∈ Θ,

Pr
(∣∣X ′

d,p(βd,p − β̃d,p)
∣∣ > |αp|

∣∣∣X \ Xd,p

)
> 0. (4.14)

If all we know is that players are Level-1 rational :

(a) If (A1.i) holds, the coefficients βℓ,p are identified.

(b) If (A1.ii) holds, the coefficients βd,p are identified.

(c) We say that player p is pessimistic with positive probability if for any ∆ > 0, there

exists X∆ ∈ S(Xp) such that Pr(Yp = 1|X) < Pr(εp ≤ X ′
pβb0 + αp0|X) + ∆ whenever

Xp ∈ X∆. If (A1.i-ii) holds and player p is pessimistic with positive probability, the

identified set4 for αp is {αp ∈ Θ : αp ≤ αp0}.

The results in Theorem 1 imposed no restrictions on Ip. In particular, players can condition

their beliefs on unobservables (to the econometrician). A special case of condition (A1.i)

is when εp is independent of X. The condition in (A1.ii) says how rich the support of the

bounded shifters must be in relation to the parameter space. Covariates with unbounded

support satisfy this condition immediately given the full-rank assumption. Finally, similar

identification results to Proposition 1 hold for cases αp ≥ 0 and α1α2 ≤ 0. The proof of the

above theorem is given in an appendix.

4.4.2 Identification with “k ≥ 2-level” rationalizability

We now move on to the case of rationalizable beliefs of higher order. Our goal is to investigate

if a higher degree of rationality will help in the task of point identifying αp. To simplify the

analysis, we will assume from now on that εp is independent of X and of I ≡ (I1, I2). This

4Here, we refer to the identified set as the set of values of αp that are observationally equivalent, conditional

on observables, to the true value αp0 .
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assumption could be replaced with one along the lines of (A1) in theorem 1. We make the

assumption that I is observed by the econometrician. We will relax this assumption in a

later section. Again, let the common prior assumption be denoted by Hp(.). The beliefs of

the players for any level k rationality can be constructed as we did in the previous section.

Our point identification sufficient conditions are summarized in theorem 2 below.

Theorem 2 Suppose there exists a subset X ∗
1 ⊆ S(X1) where X1 has full-column rank such

that for any X1 ∈ X ∗
1 , ε > 0 and θ2 ∈ Θ, there exist ℑ∗

1ε
⊂ S(I1|X1) and ℑ∗∗

1ε
⊂ S(I1|X1)

such that

Max

{
1 − E

[
H2(X

′
2β2 + ∆2)

∣∣I1

]
, E

[
H2(X

′
2β2 + ∆2)

∣∣I1

]
− E

[
H2(X

′
2β2 + ∆2 + α2)

∣∣I1

]}
< ε ∀ I1 ∈ ℑ∗

1ε

Max

{
E

[
H2(X

′
2β2 + ∆2 + α2)

∣∣I1

]
, E

[
H2(X

′
2β2 + ∆2)

∣∣I1

]
− E

[
H2(X

′
2β2 + ∆2 + α2)

∣∣I1

]}
< ε ∀ I1 ∈ ℑ∗∗

1ε

(4.15)

A special case in which (4.15) holds is when there exists X2ℓ
∈ (X2 ∩ W1) with nonzero

coefficient in Θ such that X2ℓ
has unbounded support conditional on (X2 ∪ W1) \ X2ℓ

. We

could refer to (4.15) as an “informative signal” condition. Note that implicit in (4.15) is

an exclusion restriction in the parameter space that precludes β2 = 0 for any θ2 ∈ Θ. If

(4.15) holds, then for any θ ∈ Θ such that θ1 6= θ10, there exists either W∗
1 ⊂ S(W1) or

W∗∗
1 ⊂ S(W1) such that

H1

(
X ′

1β1 + ∆1 + α1π
L
2 (θ|k; I1)

)
< H1

(
X ′

1β10 + ∆10 + α10π
U
2 (θ0|k; I1)

)
∀ W1 ∈ W∗

1 and all k ≥ 2,

H1

(
X ′

1β1 + ∆1 + α1π
U
2 (θ|k; I1)

)
> H1

(
X ′

1β10 + ∆10 + α10π
L
2 (θ0|k; I1)

)
∀ W1 ∈ W∗∗

1 and all k ≥ 2.

(4.16)

Therefore, for any k ≥ 2 the Level-k rationalizable bounds for Player 1’s conditional choice

probability of Y1 = 1|W1 that correspond to θ will be disjoint with those of θ0 with positive

probability. As a consequence, if (4.15) holds and the population of Players 1 are at least

Level-2 rational, θ10 is identified. By symmetry, θ20 will be point-identified if the above

conditions hold with the subscripts “1” and “2” interchanged.

For the case in which I1 = I2 = X, Figures 7 and 8 illustrate four graphical examples

of how the “informative signals” condition (4.15) in Theorem 2 yields disjoint Level-2 bounds.

The ability to shift the upper and lower bounds for Level-2 rationalizable beliefs ar-

bitrarily close to 1 or 0 is essential for the point-identification result in Theorem 2. For
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Figure 7: Graphical Examples of Informative Signals I
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Figure 8: Graphical Examples of Informative Signals II
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simplicity, the intercept ∆1 is subsumed in X ′
1β1 in the labels of these figures.

Inference on the rationality level k with point-identification of θθθ: If θ is point-

identified, the upper rationality bound k0 defined prior to Equation (4.12) is also point-

identified. This follows because Q(θ0|k) = 0 if and only if k ≤ k0, where Q(θ|k) is defined in

Equation (4.11). To see why this is not true when θ is set-identified, go back to parts (i)-(ii)
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following Equation (4.12).

4.5 Bayesian-Nash Equilibria and Rationalizable Beliefs

As before, let Ip be the signal player p uses to condition his beliefs about his oppo-

nent’s expected choice, and let I ≡ (I1, I2). The set of Bayesian-Nash equilibria (BNE) is

defined as any pair
(
π∗

1(I2), π
∗
2(I1)

)
≡ π∗(I) that satisfies

π∗
1(I2) = E

[
H1(X

′
1β1 + α1π

∗
2(I1))

∣∣I2

]

π∗
2(I1) = E

[
H2(X

′
2β2 + α2π

∗
1(I2))

∣∣I1

] (4.17)

By construction, the set of rationalizable beliefs for I must include the BNE set for any

rational level k. The following result formalizes this claim.

Proposition 1 Let

R(I; k) =
[
πL

1 (θ|k; I2), π
U
1 (θ|k; I2)

]
×

[
πL

2 (θ|k; I1), π
U
2 (θ|k; I1)

]

denote the set of level-k rationalizable beliefs. Then, with probability one, the BNE set

described in (4.17) is contained in R(I; k) for any k ≥ 1.

We present the proof for the case αp ≤ 0 for p = 1, 2, which we have focused on. The proof

can be adapted to all other cases. We will proceed by induction by proving first the following

claim.

Claim 2 Let π∗(I) ≡
(
π∗

1(I2) , π∗
2(I1)

)
be any BNE. Then, for any k ≥ 1, with probability

one, we have: π∗(I) ∈ R(I; k) implies π∗(I) ∈ R(I; k + 1) w.p.1.

Proof of Claim 2: If αp = 0 for p = 1 or p = 2, the result follows trivially. Suppose α1 = 0,

then πL
1 (θ|k; I2) = πU

1 (θ|k; I2) = π∗
1(I2) = E

[
H1(X

′
1β1)

∣∣I2

]
and πL

2 (θ|k; I1) = πU
2 (θ|k; I1) =

π∗
2(I1) = E

[
H2(X

′
2β2 + α2π

∗
1(I2))

∣∣I1

]
for all k ≥ 1. We focus on the case αp < 0 for

p = 1, 2. Now, suppose π∗(I) ∈ R(I; k), but π∗(I) /∈ R(I; k). Suppose for example that

πL
1 (θ|k + 1; I2) > π∗

1(I2). Since α1 < 0, this can be true if and only if

E
[
H1

(
X ′

1β1 + α1π
U
2 (θ|k; I1)

)∣∣∣I2

]

︸ ︷︷ ︸
=πL

1 (θ|k+1;I2)

> E
[
H1

(
X ′

1β1 + α1π
∗
2(I1)

)∣∣∣I2

]

︸ ︷︷ ︸
=π∗

1(I2)

For this inequality to be satisfied, it cannot be the case that π∗
2(I1) ≤ πU

2 (θ|k; I1). But this

violates the assumption that π∗(I) ∈ R(I; k). Therefore, we must have πL
1 (θ|k + 1; I2) ≤
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π∗
1(I2). Suppose now that πU

1 (θ|k; I2) < π∗
1(I2). This can be true if and only if

E
[
H1

(
X ′

1β1 + α1π
L
2 (θ|k; I1)

)∣∣∣I2

]

︸ ︷︷ ︸
=πU

1 (θ|k+1;I2)

< E
[
H1

(
X ′

1β1 + α1π
∗
2(I1)

)∣∣∣I2

]

For this inequality to be satisfied, it cannot be the case that π∗
2(I1) ≥ πL

2 (θ|k; I1). Once again,

this violates the assumption π∗(I) ∈ R(I; k). Therefore, we must have πU
1 (θ|k + 1; I2) ≥

π∗
1(I2). These results imply that we must have πL

1 (θ|k + 1; I2) ≤ π∗
1(I2) ≤ πU

1 (θ|k + 1; I2).

Following the same steps we can establish that we must have πL
2 (θ|k + 1; I1) ≤ π∗

2(I1) ≤

πU
2 (θ|k + 1; I1). Combined, these yield π∗(I) ∈ R(I; k + 1) as claimed. �

Proof of Proposition 1: Follows from Claim 2 and the fact that level-1 rational players

satisfy Hp(X
′
pβp + αp) ≤ E[Yp|Xp] ≤ Hp(X

′
pβp), which yields R(I; k = 1) = [0, 1] × [0, 1].

Consequently R(I; k = 1) contains all BNE. It follows from Claim 2 that R(I; k = 1)

contains all BNE for all k ≥ 1. �

BNE vs Rationalizability: Identification: Naturally, it is always guaranteed that one

gets a weakly smaller identified set with BNE assumptions since the predicted outcomes

based on equilibrium use stronger assumptions on player beliefs. The “size” of the ratio-

nalizable outcome set depends on the distance between the “smallest” and the “largest”

equilibrium. In the case of a unique equilibrium, one can see that in the above game and as

k → ∞, the predicted outcomes under both solution concepts converge. In addition, in the

simple example above, predicted outcomes based on rationality of order k, for any k, are a

lot easier to solve for since they do not require solutions to fixed point problems especially

in cases of multiple equilibria.

5 Identification in First Price IPV Auctions with Ra-

tionalizable Bids

This section considers a situation in which a population of symmetric, risk-neutral potential

buyers must bid simultaneously for a single good. We focus on a first-price auction with

independent private values, although our results can be adapted to the case of interdependent

private values and affiliated signals. As it is usually the case in the econometric analysis of

auctions, the object of interest is the distribution of private values. Under the assumption

that observed bids conform to a Bayesian-Nash equilibrium (BNE), nonparametric point
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identification for this distribution has been established for example by Guerre, Perrigne,

and Vuong (1999). Hence, equilibrium assumptions (and other conditions) deliver point

identification of the valuation distribution. Here, we relax the BNE requirement and assume

only that buyers are strategically sophisticated in the sense of Battigalli and Siniscalchi

(2003), abbreviated henceforth as BS. Other strategic assumptions that can be used and that

deliver qualitatively different results than BS’s interim rationalizability is the P dominance

concept introduced for auctions setups by Dekel and Wolinsky (2003) and more recently

Crawford and Iriberri (2007b). Here, we just highlight what can be learned with the BS

setup and compare those to Bayesian Nash equilibrium. Again, we do not advocate interim

rationalizability as the basis for strategic play in auctions. We just consider one other

strategic environment and study its implication on learning about the valuation distribution

from observed data on bids.

BNE requires rational, expected utility maximizing buyers with correct beliefs. Strategically

sophisticated buyers are rational and expected utility maximizers, but their beliefs may or

may not be correct. This characterization includes BNE as a special case. The degree of

sophistication will be characterized using the concept of interim rationalizability. As we will

see, this will lead to the notion of “Level-k rationalizable bids” for k ∈ N. We describe these

concepts next.

Let F0(·) denote the distribution of vi, the private valuation of bidder i. We assume

F0(·) to be common knowledge among the bidders, and focus on the case where F0(·) is log-

concave and absolutely continuous with respect to Lebesgue measure. We assume its support

to be of the form [0, ω) (i.e, normalize its lower bound by zero) and allow, in principle, the

case ω = +∞. Assume for the moment that the seller’s reservation price p0 is equal to zero.

We will explicitly introduce a strictly positive reservation price below.

Assumptions about Bidders’ Beliefs We make the following assumptions concerning

bidders’ beliefs.

Following BS, we assume that bidders expect all positive bids to win with strictly posi-

tive probability and this is common knowledge. This condition will ensure that it is common

knowledge that no bidder will bid beyond his/her valuation irrespective of his beliefs. It also

implies that every bidder with nonzero private value will submit a strictly positive bid5.

5Interim rationalizability will only naturally produce upper bounds for rationalizable bids. Additional,

ad-hoc assumptions could be made to characterize a lower bound.
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Therefore, with probability one the number of potential bidders N is equal to the number

of actual bidders (only a bidder with valuation equal to zero is indifferent between entering

the bid or not). We restrict further attention to beliefs that assign positive probability only

to increasing bidding functions. Formally, let B denote the space of all functions of the form

B =
{
b(.) : [0, ω) → R+ : b(v) ≤ v, and v > v′ ⇒ b(v) > b(v′)

}
. (5.18)

We will let N denote the number of potential bidders in the population and denote B−i =

BN−1. Beliefs for bidder i are probability distributions defined over a sigma-algebra ∆B−i
,

where this sigma-algebra is such that singletons in B−i are measurable6. A conjecture by

bidder i is a degenerate belief that assigns probability mass one to a singleton {bj}j 6=i ∈ B−i.

The distribution of valuations F0(·) as well as N are common knowledge among potential

bidders. This is similar to the common prior assumption made in the previous section.

As we will see, restricting attention to beliefs in B will yield rationalizable upper bounds for

bids which also belong in B. It also simplifies the analysis, for example, by ruling out ties

in the characterization of players’ expected utility. Finally, as we will argue below (and is

formally shown in BS), restricting attention to beliefs in B will imply that Bayesian-Nash

equilibrium (BNE) optimal bids are always rationalizable.

5.1 Prediction with Level-k Rationalizable bids

Here, we follow the setup in BS. We have a population of N risk-neutral potential buyers,

bidding simultaneously for a single object. With a zero reservation price, we can interpret N

as the number of observed bids that is common knowledge among the bidders. Each bidder

i observes his valuation vi, independent of those of other bidders with identical log-concave,

continuous distribution F0(·). The highest bid wins the object, ties are broken at random

and only the winner pays his bid. The space of beliefs we focus on assigns probability zero

to ties. Therefore, the decision problem for bidder i can be expressed as7

max
b≥0

(
vi − b

)
P̂ri

[
max
j 6=i

b(vj) ≤ b
]
, (5.19)

where P̂ri(·) denotes bidder i’s subjective probability, derived from his beliefs and knowledge

of F0(·). For level-1 rational bidding, any bidder i whose bids satisfy

b ≤ vi ≡ B1(vi;N ) w.p.1 (5.20)

6The results we analyze here do not depend on the specific choice of the sigma algebra, as long as it

satisfies the singleton-measurability mentioned here. See footnote 10 in BS.
7Strictly speaking, what matters is that ties have probability zero for the most pessimistic conjecture.
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are called level-1 rational bidders. Any expected-utility maximizer bidder i must be level-1

rational regardless of whether or not his beliefs live in B−i. Hence we have

Result: (BS) Any bid with bi ≤ vi is level-1 rational

This was proved in BS where they also show that the bound is sharp, i.e., that for any bid

in the bound, there exists a consistent and valid level 1 belief function for which that bid

is a best response. This result is interesting since in this setup, one cannot bound the bids

from below. This is in marked contrast to the BNE prediction. Note that the bound above

depends on the continuity of the valuation and the assumption that any positive bid has

a positive chance of winning. In another case where the valuations are assumed to take

countable values, Dekel and Wolinsky (2003) showed that a form of rationalizability implies

tight bounds on the bidding function in the limit as the number of bidders increases. Here,

we will derive strategies for identification of F (.) based on the BS results, but these strategies

can be easily adapted to other strategic setups like ones suggested by Dekel and Wolinsky.

Higher order rationality: We now characterize the identified features in an auction with

higher rationality levels. Focus on bidders with beliefs in B−i. The most pessimistic

assessment in B−i is given by the conjecture b(vj) = B1(vj ;N ) = vj for all j 6= i (the upper

bound for bids for level-1 rational bidders). Since bidder i knows F0, his optimal expected

utility for this assessment is

max
b≥0

(
vi − b

)
Pr

[
max
j 6=i

B1(vj;N ) ≤ b
]

= max
b≥0

(
vi − b

)
Pr

[
max
j 6=i

vj ≤ b
]

= max
b≥0

(
vi − b

)
F0(b)

N−1

≡ π∗
2(vi;N )

(5.21)

where π∗
2(vi;N ) is the lower bound for optimal expected utility (5.19) for all beliefs in B−i.

The upper expected utility bound for an arbitrary bid b is trivially given by (vi − b) for any

possible beliefs (no bidder would ever expect to win the good with probability higher than

one). Any bid submitted by a rational (i.e, expected-utility maximizer) bidder with beliefs

in B−i must satisfy

vi − b ≥ π∗
2(vi;N ) ⇒ b ≤ vi − π∗

2(vi;N ) ≡ B2(vi;N ) w.p.1 (5.22)

We refer to bidders who satisfy (5.22) as level-2 rational bidders. Given our assumptions,

B2(vi;N ) is increasing, concave and satisfies B2(vi;N ) ≤ B1(vi;N ) = vi, with strict in-

equality for all vi > 0.8 Therefore, B2 ∈ B. Let S2(·;N ) denote the inverse of B2(·;N ).

8These and more properties are enumerated in BS, who focus on a more general case which allows for
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We refer to level-3 rational bidders as those whose beliefs incorporate the level-2 upper

bound (5.22). The most pessimistic assessment for level-3 rational bidders is the conjecture

b(vj) = B2(vj ;N ) for all j 6= i. The optimal expected utility for this pessimistic assessment

is

max
b≥0

(
vi − b

)
Pr

[
max
j 6=i

B2(vj ;N ) ≤ b
]

= max
b≥0

(
vi − b

)
F0

(
S2(b;N )

)N−1
≡ π∗

3(vi;N ) (5.23)

Using the same logic that led to (5.22), the set of rationalizable bids for level-3 rational

bidders must satisfy

vi − b ≥ π∗
3(vi;N ) ⇒ b ≤ vi − π∗

3(vi;N ) ≡ B3(vi;N ) w.p.1. (5.24)

The level-3 upper bound for rationalizable bids, B3(·;N ) is increasing, concave and satisfies

B3(·;N ) ≤ B2(·;N ), with strict inequality for nonzero valuations. To see why the last result

holds, recall that B2(vi;N ) = vi − π∗
2(vi;N ) ≡ B1(vi;N ) − π∗

2(vi;N ). Therefore, for any

b we have Pr
[
max
j 6=i

B2(vj;N ) ≤ b
]
≥ Pr

[
max
j 6=i

B1(vj ;N ) ≤ b
]
. Immediately, this implies

π∗
3(·;N ) ≥ π∗

2(·;N ) and therefore B3(·;N ) ≤ B2(·;N ). Since F0(·) is not assumed to have

point masses, all the above inequalities are strict for any vi > 0. Proceeding iteratively, the

level-k bound for rationalizable bids is given by

bi ≤ vi − π∗
k(vi;N ) ≡ Bk(vi;N ) w.p.1., where

π∗
k(vi;N ) = max

b≥0

(
vi − b

)
F0

(
Sk−1(b;N )

)N−1
,

(5.25)

and Sk−1(·;N ) is the inverse function of Bk−1(·;N ). The level-k upper bounds for rationaliz-

able bids, Bk(·;N ), are increasing, concave and satisfy Bk+1(v;N ) ≤ Bk(v;N ) for all k, with

strict inequality for all v > 0. Let bBNE(v;N ) denote the optimal BNE bidding function,

produced by self-consistent, correct beliefs. BS have shown that Bk(·;N ) ≥ bBNE(·;N ) for

all k ∈ N. In particular, this is true for lim
k→∞

Bk(·;N ), which is well-defined by the aforemen-

tioned monotonicity property of the sequence
{
Bk(·;N )

}
k∈N

. Bidding below bBNE(·;N ) is

always rationalizable for any rationality level k. All results presented here will be consistent

with this type of behavior.

Example.- Suppose private values are exponentially distributed, with F0(v) = 1−exp{−θv}

and θ > 0. We have F0(v)/f0(v) = 1−exp{−θv}
θ exp{−θv} = 1

θ
exp{θv} − 1

θ
, which is an increasing func-

tion of v for all θ > 0, establishing log-concavity of F0. Figure 9 depicts Bk(·;N ), the level-k

interdependent values.
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rationalizable bounds for bids for the case θ = −0.25, N = 2 (two bidders) and k = 1, 2, 3, 4.

This graphical example illustrate the features described above for these bounds. Namely,

Bk(·;N ), is continuous, increasing, concave, invertible and satisfies Bk+1(v;N ) ≤ Bk(v;N )

for all k, with strict inequality for all v > 0. For this particular example, the bounds

corresponding to k ≥ 5 are graphically indistinguishable from B4(v;N ).
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Level-k Upper Bound for Rationalizable Bids for Valuations with Exponential Distribution 

F(v)=1-Exp[-  v] with =0.25 and k=1,2,3,4. (number of bidders is N=2)  

Figure 9: Level-k rationalizable bounds Bk(·;N ) for F0(v) = 1 − e−0.25v, N = 2 and k =

1, 2, 3, 4.

5.2 Identification with level-k rationality

This section exploits the above bounds to learn about the distribution of valuation given a

random sample of bids. Initially, we will assume that we observe a random sample of size

L auctions each with N bidders with non binding reservation prices. An observation is an

auction and for each auction, we assume also that we observe all the submitted bids. In

the next sections we will relax the binding reserve price assumptions and we allow that only

winning bids are observed.

We assume a semiparametric setting where F0 belongs to a space of log-concave, absolutely
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continuous distribution functions with support [0, ω) of the form

FΘ
v =

{
F (·; θ) : θ ∈ Θ, and F0(·) = F (·; θ0) for some θ0 ∈ Θ

}
(5.26)

Here, one can also think of Θ as a set of functions and hence the above definition accommo-

dates nonparametric analysis. Denote the level-k upper bound that corresponds to F (·; θ)

by Bk(·;N|θ).

Level-1 rationality: For rationality of level 1, the game predicts that

0 ≤ bl
i ≤ vl

i for all i = 1, . . . ,N l = 1, . . . , L

This is a problem of inference with interval data. The b’s are observed and the v’s are not, but

we observe a bound on every observation. The object of interest is the distribution function

F of the valuations v (here, one can introduce auction heterogeneity that is observed). This

implies that

F0(t; θ) ≡ P (v ≤ t) ≤ P (b ≤ t) ≡ Gb(t)

So, with the first level of rationality, we can bound the valuation distribution above by the

observed distribution of the bids. Inference here will be handled below and is based on

replacing the observed bids distribution with its consistent empirical analog.

Level-k rationality: Similarly to above, for level-k and any θ ∈ Θ, we have

0 ≤ bl
i ≤ vl

i − π∗
k(vi;N|θ) ≡ Bk(vi;N )

for all i = 1, . . . ,N l = 1, . . . , L

Hence, this means that if bidders are level-k rational,

F
(
Sk(t;N|θ0); θ0

)
≤ P (b ≤ t) ≡ Gb(t)

where, as before, Sk denotes the inverse function of Bk. Here, the bound is a little more

complicated since the function S depends also on F0. Inference about θ can be based on the

following results.

Proposition 2 Suppose F0 belongs to a space of distribution functions as described in (5.26).

Moreover, suppose we have a random sample of size L of auctions each of which has N

bidders and where we observe all bids. Take k ∈ N+, and let

Λ(θ|a, c; k) =

∫ (
1 − 1l

{
Fb(b) ≥ F

(
Sk(b;N|θ); θ

)})
1l
{
a ≤ b ≤ c

}
dFb(b),

Γ(θ|k) =

∫ ∫
Λ(θ|a, c; k)dFb(a)dFb(c)

(5.27)
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Then, under the sole assumption that all bidders are level-k rational, the identified set is:

Θ(k) =
{
θ ∈ Θ : θ ∈ argmin

θ∈Θ
Γ(θ|k)2

}
.

If the following condition holds for a known k0, a stronger identification result can be ob-

tained.

Assumption B1 Suppose there exists k0 such that all bidders are level-k0 rational

and, with positive probability, bids are equal to the level-k0 bounds. That is, suppose

Pr
(
bi ≤ Bk0

(
vi;N

∣∣θ0

))
= 1, and Pr

(
bi = Bk0

(
vi;N

∣∣θ0

))
> 0.

Proposition 3 Suppose Assumption B1 holds and let Θ(k0) be as defined in Proposition 2.

For θ ∈ Θ let

F c(θ) =
{

θ′ ∈ Θ : Bk0(vi;N|θ′) < Bk0(vi;N|θ) w.p.1.
}

(5.28)

Then, the identified set is

Θ∗
0 =

{
θ ∈ Θ(k0) : ∄ θ′ ∈ Θ such that θ′ ∈ F c(θ)

}
. (5.29)

Consequently, if there exist θ ∈ Θ(k0) such that

F (·; θ) < F (·; θ) for all θ ∈ Θ(k0), (5.30)

then Θ∗
0 =

{
θ
}

and consequently, θ0 = θ.

Under Assumption B1, θ /∈ Θ(k0) implies θ 6= θ0 and θ ∈ Θ(k0) holds only if θ /∈ F c(θ0).

Suppose we have θ, θ′ ∈ Θ(k0) such that θ′ ∈ F c(θ). Then, it cannot be the case that θ = θ0

because θ′ ∈ F c(θ0) would imply θ′ /∈ Θ(k0). Thus, any such θ can be discarded as the true

θ0. To see the potential usefulness of this result, suppose FΘ
v is a space of exponentially

distributed valuations, Assumption B1 holds and we find that the largest value of Θ(k0)

is θ < ∞. This would immediately imply θ0 = θ. Figure 10 illustrates this result for the

exponential distribution. Inference about θ can be based on either of the previous results

for a given k assumed to satisfy the corresponding assumptions by estimating Γ(θ|k) e.g, by

Γ̂(θ|k) =

(
LN

3

)−1 ∑

m<ℓ<n

(
1− 1l

{
F̂b(bℓ) ≥ F

(
Sk(bℓ;N|θ); θ

)})
1l
{

bm ≤ bℓ ≤ bn

}
(5.31)

where F̂b(b) = 1
L

∑L

ℓ=1 1l
{
bℓ ≤ b

}
is the empirical cdf. For a given θ, the level-k rationalizable

upper bound Sk(·;N|θ) can be computed analytically for any k ≥ 1. If Θ is a subset of a

Euclidian space, then recent set inference methods can be used to obtain estimates of the

identified set.
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Level-2 Upper Bound for Rationalizable Bids for Valuations with Exponential Distribution 

F(v)=1-Exp[-  v] and various levels of  (number of  bidders is N=2)

Figure 10: If Assumption B1 holds with k0 = 2 and if we knew that

{0.25, 0.50, 0.75, 1.00, 1.25} ⊂ Θ(k0), it would follow immediately that θ0 ≥ 1.25.

Remark 3 Let

B∞(·;N|θ) = lim
k→∞

Bk(·;N|θ). (5.32)

Given our assumptions, the results in (BS) can be used to show that B∞(·;N|θ) exists,

and is a continuous, increasing, concave and invertible mapping that satisfies B∞(·;N|θ) ≥

bBNE(·;N|θ). If the rationality bound k0 described in Assumption B1 does not exist, we must

have bi ≤ B∞(vi;N|θ) w.p.1. The results in Proposition 3 would follow if the conditions

stated there hold for the mapping B∞(·;N|θ).

5.2.1 Identification When Only Winning Bids are Observed

In this section we modify the results above for the case where only the wininng bid is observed

in every auction. In particular, we observe

b∗ = max
i=1,...,N

bi. (5.33)

Under these conditions, it follows from the monotonic nature of rationalizable upper bounds
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that if bidders are level-k rational, with probability one,

b∗ ≡ max
i=1,...,N

bi ≤ max
i=1,...,N

Bk(vi;N|θ0) = Bk

(
max

i=1,...,N
vi;N

∣∣θ0

)
≡ Bk(v

∗;N|θ0). (5.34)

Then, we must have

Pr(b∗ ≤ b) ≥ Pr
(
Bk(v

∗;N|θ0) ≤ b
)

∀ b ∈ R. (5.35)

Since private values are iid, it follows that v∗ ∼ F (·; θ0)
N . Let Fb∗(·) denote the distribution

function of b∗, the highest bid. Equation (5.35) becomes

Fb∗(b) ≥ F
(
Sk(b;N|θ0); θ0

)N
∀ b ∈ R. (5.36)

where, as before, Sk(·;N|θ) denotes the inverse function of the upper bound Bk(·;N|θ).

Clearly, by the nondecreasing properties of distribution functions, (5.36) holds for all b ∈ R

if and only if it holds for all b ∈ S(b∗) (the support of b∗). We conclude that this implies

Fb∗(b) ≥ F
(
Sk(b;N|θ0); θ0

)N
∀ b ∈ S(b∗). (5.37)

Equation (5.37) can be used, as in the previous to conduct inference on the set of consistent

models. To do that, a similar objective function as the one in Proposition 2 above can be

used. The results in Proposition 3 would also follow if Assumption B1 holds for b∗.9

5.3 Introducing a Binding Reserve Price

Suppose there is a nonzero reserve price p0 set by the seller, and publicly observed by all

potential buyers. We modify Assumption B0 accordingly as follows.

Assumption B0’ Assume now that all bidders expect any bid b ≥ p0 to win with strictly

positive probability, and this is common knowledge. The implication of this for submitted

bids is that bi ≥ p0 if and only if vi ≥ p0. We restrict attention to beliefs that assign positive

probability only to bidding functions that are increasing for all v ≥ p0 and are equal to p0 for

v = p0. Formally, let B(p0) denote the space of all Borel-measurable functions of the form

{
b : [0, ω) → R+ : b(v) < p0 ∀ v < p0; b(p0) = p0, and for all v > p0: b(v) ≤ v, and

v > v′ ⇒ b(v) > b(v′)
}

.

9It appears that even if B1 is assumed to hold for all bids, we would have to explicitly assume that it

holds for b∗ because, with heterogeneous beliefs, it is no longer true that the highest bid corresponds to the

highest valuation among potential bidders.
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(5.38)

We will let N denote the number of potential bidders in the population and denote B−i(p0) =

B(p0)
N−1. Beliefs for bidder i are probability distributions defined over a sigma-algebra

∆B−i
(p0), where this sigma-algebra is such that singletons in B−i are measurable (see foot-

note 6). As before, conjectures are defined as degenerate beliefs that assigns probability

mass one to a singleton {bj}j 6=i ∈ B−i. We maintain the assumption that F0(·) and N are

common knowledge among potential bidders.

A consequence of a binding reserve price is that the number of potential bidders N may no

longer be equal to the number of bidders who participate in the auction. Potential bidders

with valuation vi < p0 will not submit a bid. Beliefs for valuations v < p0 will be irrelevant

for participating bidders, except for the fact that it is common knowledge that vj < p0

implies bj < p0 w.p.1 for all potential bidders. As in the case of zero reservation price,

restricting attention to beliefs in B(p0) will yield rationalizable upper bounds which also

belong in B(p0). It also rules out ties in the characterization of expected utility for bidders

with valuation v ≥ p0 (the only ones who participate in the auction). As in the case of

zero reservation price, restricting attention to beliefs in B(p0) will imply that Bayesian-Nash

equilibrium (BNE) optimal bids are always rationalizable.

Level-k Rationalizable Bids

The construction of rationalizable upper bounds will follow the same interim-rationalizability

steps as in Subsection 5.1. Any bidder i with vi ≥ p0 whose bids satisfy

b ≤ vi w.p.1. (5.39)

is called level-1 rational. Higher-rationality levels are characterized as before. The decision

problem for any bidder i with vi ≥ p0 can now be expressed as

max
b≥p0

(
vi − b

)
P̂ri

[
max

{
p0, max

j 6=i
b(vj)

}
≤ b

]
, (5.40)

where P̂ri(·) denotes bidder i’s subjective probability, derived from his beliefs and knowledge

of F0(·). The optimal bid for any assessment in B−i(p0) for any bidder with vi = p0 will

always be vi = p0. Focusing on the case vi > p0, the most pessimistic assessment in B−i(p0)

is given by the conjecture “b(vj) = vj for all j 6= i such that vj ≥ p0”. The optimal expected

utility for this assessment is

max
b≥p0

(
vi − b

)
F0(b)

N−1 ≡ π∗
2(vi;N , p0), (5.41)
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which follows because P̂ri

[
max

{
p0, max

j 6=i
vj

}
≤ b

]
= F0(b)

N−11l
{
b ≥ p0

}
(recall that F0, N

and p0 are common knowledge among bidders). Using the same arguments that followed

Equation (5.21), level-2 rational bidders with vi ≥ p0 must satisfy

p0 ≤ b ≤ vi − π∗
2(vi;N , p0) ≡ B2(vi;N , p0). (5.42)

B2(vi;N , p0) is the level-1 rationalizable upper bound for all bidders with vi ≥ p0. It is

continuous, increasing and invertible for all vi ≥ p0, with B2(p0;N , p0) = p0. In particular,

the inverse function of B2(·;N , p0) is well-defined for all values and bids ≥ p0. As before,

we will denote this inverse function by S2(·;N , p0). Note that, in general, (5.41) has corner

solutions. That is, there exists a range of valuations vi > p0 such that π∗
2(vi;N , p0) =

(
vi −

p0)F0(p0)
N−1. This, of course, will not impact the continuity, monotonicity and invertibility

properties of the upper bound B2(·;N , p0) for values vi ≥ p0. Nothing can be said about

rationalizable upper bounds for vi < p0, except that they lie strictly beneath p0. Bounds for

such range of valuations are irrelevant for the optimal decision process of bidders. Proceeding

iteratively, the level-k bound for rationalizable bids is given by

bi ≤ vi − π∗
k(vi;N , p0) ≡ Bk(vi;N , p0), where π∗

k(vi;N ) = max
b≥p0

(
vi − b

)
F0

(
Sk−1(b;N , p0)

)N−1
,

(5.43)

and Sk−1(·;N , p0) is the inverse function of Bk−1(·;N , p0), well-defined for all values and

bids ≥ p0.

5.3.1 Identification Observing only Winning Bids

If we replace Assumption B0 with B0’, all the results in Subsection 5.2.1 hold with a binding

reserve price for all vi ≥ p0 and bi ≥ p0. Consider a semiparametric setting as the one

described in (5.26), where the distribution of valuations is allowed to depend on the publicly

observed reserve price p0

FΘ,p0
v =

{
F (·; θ, p0) : θ ∈ Θ, and F0(·; p0) = F (·; θ0, p0) for some θ0 ∈ Θ

}
(5.44)

Let Bk(·;N|θ, p0) denote the k-level upper bound for rationalizable bids that would be in-

duced by a given distribution F (·; θ, p0) ∈ FΘ,p0
v , let Bk(·;N|θ, p0) denote its inverse function.

Let b∗ denote the winning bid, and Fb∗(·; p0) denote its distribution function (given p0). Note

that b∗ is max
i=1,...,N

bi, truncated from below at p0. This automatic truncation ensures that the

bounds in (5.43) are satisfied. As we mentioned previously, bids below p0 may not satisfy
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these bounds. If bidders are level-k rational, for any reserve price p0 we must have

Fb∗(b; p0) ≥ F
(
Sk(b;N|θ0, p0); θ0, p0

)N
∀ b ∈ S(b∗|p0), (5.45)

where S(b∗|p0) is the support of b∗ given p0. This result is the equivalent to Equation (5.37).

Proposition 4 Suppose F0 belongs to a space of distribution functions as described in (5.44).

Moreover, suppose we have a random sample of size L of auctions each of which has N

bidders and where we only observe the winning bid in every auction. Let the reservation

price p0 be known. Define

Λ(θ|a, c; k, p0) =

∫ (
1 − 1l

{
Fb∗(b; p0) ≥ F

(
Sk(b;N|θ, p0); θ, p0

)N})
1l
{
a ≤ b ≤ c

}
dFb∗(b; p0),

Γ(θ|k, p0) =

∫ ∫
Λ(θ|a, c; k, p0)dFb∗(a; p0)dFb∗(c; p0).

(5.46)

Then, under the sole assumption that all bidders are level-k rational, the identified set is:

Θ(k, p0) =
{
θ ∈ Θ : θ ∈ argmin

θ∈Θ
Γ(θ|k, p0)

2
}
.

Now, suppose we assume that winning bids satisfy Assumption B1 for some k0. For any

θ ∈ Θ let

F c(θ, p0) =
{
θ ∈ Θ : Bk0(vi;N|θ′, p0) < Bk0(vi;N|θ, p0) w.p.1

}

Θ∗
0(p0) =

{
θ ∈ Θ(k0, p0) : ∄ θ′ ∈ Θ(k0, p0) such that θ′ ∈ F c(θ, p0)

} (5.47)

Then, the identified set is

Θ∗
0 =

{
θ ∈ Θ : θ ∈ Θ∗

0(p0) w.p.1 (with respect to p0)
}

(5.48)

Note that the identification result in (5.48) requires that we explicitly assume that Assump-

tion B1 holds for winning bids, see footnote 9. We now discuss briefly how the previous

result could be constructive for estimation in the case of varying reserve price. Suppose we

have a sample of ℓ = 1, . . . , L auctions with a population of potential bidders as described

in the conditions leading to Proposition 4. Suppose the researcher observes the winning

bids {b∗ℓ}
L
ℓ=1, reservation prices {p0ℓ

}L
ℓ=1 and the number of actual entrants in each auction,

{Mℓ}L
ℓ=1. We assume that the observed winning bids and reservation prices {b∗ℓ , p0ℓ

}L
ℓ=1 are

iid draws from the same population. Once again, this implies that beliefs are random draws
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from the same distribution, and the data generating process for the reservation price is also

the same across auctions. The latter would be trivially satisfied if the reservation price is

constant across all auctions. We assume that the number of potential entrants N is the same

for all auctions in the sample. Given our assumptions, this implies Iℓ =
∑N

i=1 1l
{
vi ≥ p0ℓ

}
.

Therefore,

E[Iℓ] = NEp0ℓ

[
F (p0ℓ

; θ0, p0ℓ
)
]

⇒ N =
E[Iℓ]

Ep0ℓ

[
F (p0ℓ

; θ0, p0ℓ
)
] . (5.49)

Let

N (θ) =
E[Iℓ]

Ep0ℓ

[
F (p0ℓ

; θ, p0ℓ
)
] ; N̂ (θ) =

Ê[Iℓ]

Êp0ℓ

[
F (p0ℓ

; θ, p0ℓ
)
] . (5.50)

The results in Proposition 4 can be constructive for estimation purposes if we use analog

objects of the form

Λ̂(θ|a, c; k, p0) =

∑L

ℓ=1

(
1 − 1l

{
F̂b∗(b

∗
ℓ ; p0) ≥ F

(
Sk(bℓ; N̂ (θ)|θ, p0); θ, p0

) bN (θ)
})

1l
{
a ≤ b∗ℓ ≤ c

}
Kh

(
p0ℓ

− p0

)

∑L

ℓ=1 Kh

(
p0ℓ

− p0

)

Γ̂(θ|k, p0) =

∑L

m=1

∑L

n=1 Λ̂(θ|b∗m, b∗n; k, p0)Kh

(
p0m

− p0

)
Kh

(
p0n

− p0

)
∑L

m=1

∑L

n=1 Kh

(
p0m

− p0

)
Kh

(
p0n

− p0

) ,

(5.51)

where F̂b∗(b; p0) =
PL

ℓ=1 1l{b∗
ℓ
≤b}Kh(p0ℓ

−p0)PL
ℓ=1 Kh(p0ℓ

−p0)
and Kh(u) = K(u/h) for some kernel K(·) and

bandwidth sequence h. Recall that the relevant distribution is Fb∗(·; p0), the distribution of

max
i=1,...,N

bi, truncated at p0, conditional on p0.

5.3.2 Identification Results for the Rationality Level k0k0k0 in Assumption B1.

Suppose we assume that there exists a finite k0 ≥ 2 that satisfies the conditions of Assump-

tion B1 (otherwise, see Remark 3). The results in Proposition 3 are constructive when k0 ≥ 2

is assumed to be known. Naturally, one would be interested in having an identification result

for both θ and k0 simultaneously. For any k define

Θ̃(k) =
{
θ ∈ Θ : Γ(θ|k)2 = 0

}
, (5.52)

where Γ(θ|k) is as defined in Proposition 2. Let Θ(k) be as defined there. Then, the following

holds
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(i) If k ≤ k0, then Θ̃(k) = Θ(k) and therefore θ0 ∈ Θ̃(k).

(ii) If k > k0, then θ0 /∈ Θ̃(k).

If k0 ≥ 2, it follows that θ0 ∈ Θ(2). Using this, along with (i)-(ii) we have the following

result.

Proposition 5 Let Θ(k) and Γ(θ|k) be as defined in Proposition 2. Define

Γ(k) = min
θ∈Θ(2)

Γ(θ|k)2. (5.53)

Then, if Assumption B1 is satisfied with k0 ≥ 2, the following results hold

(i) Γ(k) = 0 for all k ≤ k0. However, Γ(k) = 0 does not imply k ≤ k0.

(ii) Γ(k) > 0 implies k > k0.

It follows from Proposition 5 that any k′ such that Γ(k′) > 0 can be ruled out as the true k0

described in Assumption B1, implying that there is a subset of bidders who are strictly less

than level-k’ rational. At the same time, the set
{
k ∈ N : Γ(k) = 0

}
includes all k ≤ k0,

but it also includes some values k > k0.

6 Conclusion

This paper examined the identification power of equilibrium assumptions in three simple

games. We replaced equilibrium with a form of rationality (interim rationalizability) which

includes equilibrium as a special case, and compared the identified features of the game under

rationality and under equilibrium. The games we studied are stylized versions of empirical

models considered and applied in the literature and hence insights provided here can be

carried over to those empirical frameworks. We do not advocate dropping the equilibrium

assumptions from empirical work. But rather, the paper simply examines the question of

what is the identifying power of equilibrium in these simple setups. For example, it is not

clear that one would want to drop equilibrium in a first price auction since the underlying

interim-rationalizability based model may not provide strong restrictions on the observed bids

as they relate to the underlying valuations. Ultimately, the researcher faces the usual trade-

off between robustness and predictive power and a balancing act guided by the economics of
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the particular application at hand needs to be done. In addition, we do not advocate either

the use of rationalizability per se as the basis for strategic interaction. But, we do note

that it has received extensive attention by game theorists (see for example Morris and Shin

(2003), Dekel, Fudenberg, and Morris (2007) and the references cited therein). Moreover,

rationalizable outcomes are ones that are closest to what a reasonable decision maker would

use. Interim rationalizability allows us to incorporate the concept of higher order beliefs into

the econometric analysis through what we defined here as rationality levels.

Some questions remain to be answered and we leave those for ongoing and future

work. As far as the above results, the paper here is concerned with identification. A natural

extension would be to study the statistical properties of estimators proposed above and apply

those estimators in empirical examples. Another avenue of research is to extend some of the

ideas above to dynamic setups. It is well known that inference in dynamic games is hard10

The identification question is complicated due mostly to the complexity of the underlying

economic model that is much richer. For example, the presence of multiple equilibria and

beliefs off the equilibrium, where no data is available, are hard problems to deal with. In

addition, the computational problem is large and involves solving complicated fixed point

maps. It might be possible to examine the identification power of other strategic concepts

that would be natural in dynamic settings such as the self-confirming equilibria of Fudenberg

and Levine (1993). In addition to examining the robustness to equilibrium assumptions,

these identification framework can be used to study whether inference under these different

strategic frameworks, though less sharp, is more practically useful for applied researchers.
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7 Appendix

Proof of theorem 1: From our previous analysis, we know that both players are Level-1

rational if and only if with probability one in S(X),

Pr
(
ε1 > X ′

1β1, ε2 > X ′
2β2

∣∣X
)
≤ Pr(Y1 = 0, Y2 = 0|X) ≤ Pr

(
ε1 > X ′

1β1 + α1, ε2 > X ′
2β2 + α2

∣∣X
)

Pr
(
ε1 ≤ X ′

1β1 + α1, ε2 > X ′
2β2

∣∣X
)
≤ Pr(Y1 = 1, Y2 = 0|X) ≤ Pr

(
ε1 ≤ X ′

1β1, ε2 > X ′
2β2 + α2

∣∣X
)

Pr
(
ε1 > X ′

1β1, ε2 ≤ X ′
2β2 + α2

∣∣X
)
≤ Pr(Y1 = 0, Y2 = 1|X) ≤ Pr

(
ε1 > X ′

1β1 + α1, ε2 ≤ X ′
2β2

∣∣X
)

Pr
(
ε1 ≤ X ′

1β1 + α1, ε2 ≤ X ′
2β2 + α2

∣∣X
)
≤ Pr(Y1 = 1, Y2 = 1|X) ≤ Pr

(
ε1 ≤ X ′

1β1, ε2 ≤ X ′
2β2

∣∣X
)

(7.54)

We denote the true parameter value by θ0. To prove part (a), take any β̃1 6= β10 such that

β̃ℓ,1 6= βℓ,10. Given this and the support properties of Xℓ,1, for any scalar d we can observe

either of the following two events with positive probability: (i) X ′
1β̃1 + d > X ′

1β10 or (ii)

X ′
1β̃1 < X ′

1β10 +α10 . Take case (i) first, with d = α1 (arbitrary); if β̃2,ℓβ2,ℓ0 > 0 we can make

β̃ ′
2X2 → +∞ and β ′

20
X2 → +∞. By Assumption (A1), this yields Pr(ε1 ≤ X ′

1β̃1 + α1, ε2 ≤

X ′
2β̃2 + α2|X) → Pr(ε1 ≤ X ′

1β̃1 + α1|X), and Pr(ε1 ≤ X ′
1β10 , ε2 ≤ X ′

2β20 |X) → Pr(ε1 ≤
X ′

1β10 |X) < Pr(ε1 ≤ X ′
1β̃1 + α1|X). Therefore, with positive probability as X2 explodes,

Pr(ε1 ≤ X ′
1β̃1 + α1, ε2 ≤ X ′

2β̃2 + α2|X) > Pr(ε1 ≤ X ′
1β10 , ε2 ≤ X ′

2β20 |X) > Pr(Y1 =

1, Y2 = 1|X), which violates (7.54). If β̃2,ℓβ2,ℓ0 < 0, the result is easier to obtain by making

β̃ ′
2X2 → +∞ and β ′

20
X2 → −∞. For case (ii), drive β̃ ′

2X2 → −∞ and β ′
20

X2 → −∞ if

β̃2β20 > 0, or β̃ ′
2X2 → −∞ and β ′

20
X2 → +∞ if β̃2β20 > 0. In either case we eventually

obtain Pr(ε1 > X ′
1β̃1, ε2 > X ′

2β̃2|X) > Pr(ε1 > X ′
1β10 + α10 , ε2 > X ′

2β20 + α20 |X) > Pr(Y1 =

0, Y2 = 0|X), which violates (7.54). This establishes identification of βℓ,1, an analog proof

shows that βℓ,2 is identified, which proves part (a).

To establish part (b) focus on the worst-case scenario, and take θ̃ 6= θ0 where

β̃d,p 6= βd,p0, but β̃ℓ,p = βℓ,p0 for p = 1, 2 —the parameters of the unbounded-support shifters

are fixed at their true values–. Identification here must rely on the properties of Xd,p, the

bounded-support shifters. The condition in the statement of the proposition ensures that

(i) or (ii) (above) hold even if we fix β̃ℓ,p = βℓ,p0. To complete the proof of (b) we proceed

as in the previous paragraph (note that we now have β̃ℓ,pβℓ,p0 > 0). The case β̃d,p 6= βd,p0

and β̃ℓ,p 6= βℓ,p0 is straightforward along the same lines. Now, onto part (c). Consider θ̃

that is equal to θ0 element-by-element except for α̃1 6= α10 and recall that the parameter

space of interest has αp ≤ 0. Clearly, none of the lower bounds in (7.54) evaluated at θ̃

will ever be larger than the corresponding upper bounds evaluated at θ0, and none of the

upper bounds evaluated at θ̃ will ever be smaller than the corresponding lower bounds eval-

uated at θ0. Therefore, without further assumptions θ̃ and θ0 are observationally equivalent

and α1 is not identified. The only way we can proceed is by adding more structure on

Pr(Y1, Y2|X). We have Pr(ε1 ≤ X ′
1β10 + α10) ≤ Pr(Y1 = 1|X) ≤ Pr(ε1 ≤ X ′

1β10), therefore

Pr(ε1 ≤ X ′
1β10 + α̃1) > Pr(Y1 = 1|X) only if α̃1 > α10 . Therefore, θ̃ can violate (7.54) only

if α̃1 > α10 . For any such α̃1, let ∆ = Pr(ε1 ≤ X ′
1β10 + α̃1) − Pr(ε1 ≤ X ′

1β10 + α10) > 0.

44



By the assumption in part (c), there exists a subset X1 ∈ S(X1) such that Pr(Y1 = 1|X) <

Pr(ε1 ≤ X ′
1β10 + α10) + ∆ = Pr(ε1 ≤ X ′

1β10 + α̃1). Make X ′
2β20 → +∞ and the lower bound

on the fourth inequality in (7.54) will be violated. This establishes part (c). Any θ̃ 6= θ0

where α̃p 6= αp0 and either β̃ℓ,p 6= βℓ,p0 or β̃d,p 6= βd,p0 can be shown not to be observationally

equivalent to θ0 using the same arguments as in the previous paragraphs given the assump-

tions in parts (a) and (b). �

Proof of Theorem 2

Suppose there exists a subset of realizations in X
∗

1 ⊂ X ∗
1 such that

X ′
1β1 + ∆1 + α1 > X ′

1β10 + ∆10 + α10 ∀ X1 ∈ X
∗

1. (7.55)

By continuity of the linear index, and of the distribution H1, for any X1 ∈ X
∗

1 we can find

a pair 0 ≤ pL(X1) < pU(X1) ≤ 1 such that

H1

(
X ′

1β1 + ∆1 + α1p
L(X1)

)
< H1

(
X ′

1β10 + ∆10 + α10p
U(X1)

)
. (7.56)

To see why pL(X1) and pU(X1) exist, fix pU(X1) = 1. By continuity, there exists a small

enough δ > 0 such that pL(X1) ≥ 1 − δ satisfies (7.56). If condition (4.15) in Theorem 2

holds, then there exists W∗
1 ⊂ S(W1) such that11

Min

{
E

[
H2(X

′
2β2 + ∆2 + α2)

∣∣I1

]
, E

[
H2(X

′
2β20 + ∆20 + α20)

∣∣I1

]}
≥ pL(X1) ∀ W1 ∈ W∗

1

Max

{
E

[
H2(X

′
2β2 + ∆2)

∣∣I1

]
, E

[
H2(X

′
2β20 + ∆20)

∣∣I1

]}
≤ pU(X1) ∀ W1 ∈ W∗

1 .

(7.57)

By definition, we have

E
[
H2(X

′
2β2+∆2+α2)

∣∣I1

]
= πL

2 (θ|k = 2; I1); E
[
H2(X

′
2β20 +∆20)

∣∣I1

]
= πU

2 (θ0|k = 2; I1).

(7.58)

Combining (7.57) and (7.58),

πL
2 (θ|k = 2; I1) ≥ pL(X1); πU

2 (θ0|k = 2; I1) ≤ pU(X1) ∀ W1 ∈ W∗
1 . (7.59)

Combining (7.56) and (7.59),

H1

(
X ′

1β1 + ∆1 + α1π
L
2 (θ|k = 2; I1)

)
≤ H1

(
X ′

1β1 + ∆1 + α1p
L(X1)

)
< H1

(
X ′

1β10 + ∆10 + α10p
U(X1)

)

≤ H1

(
X ′

1β10 + ∆10 + α10π
U
2 (θ0|k = 2; I1)

)
∀ W1 ∈ W∗

1 .

11Note trivially that since αp ≤ 0 everywhere in Θ, we have

Min

{
E

[
H2(X

′
2β2 + ∆2 + α2)

∣∣I1

]
, E

[
H2(X

′
2β20 + ∆20 + α20)

∣∣I1

]}

≤ Max

{
E

[
H2(X

′
2β2 + ∆2)

∣∣I1

]
, E

[
H2(X

′
2β20 + ∆20)

∣∣I1

]}
w.p.1.
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(7.60)

This would correspond to the case described in the first line of Equation (4.16). Next,

suppose (7.55) does not hold but there exists a subset of realizations X
∗∗

1 ⊂ X ∗
1 such that

X ′
1β10 + ∆10 + α10 > X ′

1β1 + ∆1 + α1 ∀ X1 ∈ X
∗∗

1 . (7.61)

Repeating the same arguments as above exchanging θ and θ0, we would arrive at the equiv-

alent of (7.60), namely

H1

(
X ′

1β10 +∆10 +α10π
L
2 (θ0|k = 2; I1)

)
< H1

(
X ′

1β1+∆1+α1π
U
2 (θ|k = 2; I1)

)
∀ W1 ∈ W∗∗

1 .

(7.62)

This would correspond to the case described in the second line of Equation (4.16). The last

remaining possibility is that neither (4.16) nor (7.61) hold. In this case,

X ′
1β10 + ∆10 + α10 = X ′

1β1 + ∆1 + α1 ∀ X1 ∈ X ∗
1 . (7.63)

Since X1 has full column rank in X ∗
1 , (7.63) implies β10 = β1 and ∆10 +α10 = ∆1 +α1. Since

θ1 6= θ10 , we must have either

∆1 > ∆10 , or ∆1 < ∆10 . (7.64)

Suppose ∆1 > ∆10 . This immediately yields X ′
1β1 + ∆1 > X ′

1β10 + ∆10 for all X1 ∈ X ∗
1 . By

continuity, we can find a pair 0 ≤ pL(X1) < pU(X1) ≤ 1 such that

H1

(
X ′

1β1 + ∆1 + α1p
U(X1)

)
> H1

(
X ′

1β10 + ∆10 + α10p
L(X1)

)
. (7.65)

To see why pL(X1) and pU(X1) exist, fix pL(X1) = 0. By continuity, there exists a small

enough δ > 0 such that pU(X1) ≤ δ satisfies (7.65). If condition (4.15) in Theorem 2 holds,

then there exists W∗∗∗
1 ⊂ S(W1) such that

Min

{
E

[
H2(X

′
2β2 + ∆2 + α2)

∣∣I1

]
, E

[
H2(X

′
2β20 + ∆20 + α20)

∣∣I1

]}
≥ pL(X1) ∀ W1 ∈ W∗∗∗

1

Max

{
E

[
H2(X

′
2β2 + ∆2)

∣∣I1

]
, E

[
H2(X

′
2β20 + ∆20)

∣∣I1

]}
≤ pU(X1) ∀ W1 ∈ W∗∗∗

1 .

(7.66)

Using the definitions of πL
2 (θ|k = 2; I1) and πU

2 (θ0|k = 2; I1) (e.g, Equation 7.58), we obtain

πU
2 (θ|k = 2; I1) ≤ pU(X1); πL

2 (θ0|k = 2; I1) ≥ pL(X1) ∀ W1 ∈ W∗∗∗
1 . (7.67)

Using (7.65), this yields

H1

(
X ′

1β1+∆1+α1π
U
2 (θ|k = 2; I1)

)
> H1

(
X ′

1β10+∆10+α10π
L
2 (θ0|k = 2; I1)

)
∀ W1 ∈ W∗∗∗

1 .

(7.68)
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This corresponds to a case like the one described in the second line of Equation (4.16).

If ∆1 < ∆10 , the same arguments as above while exchanging θ with θ0 would lead us to

conclude that there exists a set W4∗
1 ⊂ S(W1) such that

H1

(
X ′

1β10 +∆10 +α10π
L
2 (θ0|k = 2; I1)

)
> H1

(
X ′

1β1+∆1+α1π
U
2 (θ|k = 2; I1)

)
∀ W1 ∈ W4∗

1 .

(7.69)

We have now established Equation (4.16) in Theorem 2 for the case k = 2. The cases k > 2

follow immediately from here by recalling the monotonic property of rationalizable bounds

which says that, with probability one,

H1

(
X ′

1β1 + ∆1 + α1π
L
2 (θ|k + 1; I1)

)
≤ H1

(
X ′

1β1 + ∆1 + α1π
L
2 (θ|k; I1)

)
∀ k ≥ 1

H1

(
X ′

1β1 + ∆1 + α1π
U
2 (θ|k + 1; I1)

)
≥ H1

(
X ′

1β1 + ∆1 + α1π
U
2 (θ|k; I1)

)
∀ k ≥ 1.

To see why this implies that the rationalizable bounds for Player 1’s conditional choice

probabilities are disjoint with positive probability for all k ≥ 2, recall that the Level-2

bounds are given by

[
H1

(
X ′

1β1 + ∆1 + α1π
U
2 (θ|k = 2; I1)

)
, H1

(
X ′

1β1 + ∆1 + α1π
L
2 (θ|k = 2; I1)

)]
(for θ)

[
H1

(
X ′

1β10 + ∆10 + α10π
U
2 (θ0|k = 2; I1)

)
, H1

(
X ′

1β10 + ∆10 + α10π
L
2 (θ0|k = 2; I1)

)]
(for θ0).

(7.70)

It follows from our results that the Level-2 rationalizable bounds for θ are disjoint from those

of θ0 with positive probability. Since the bounds for k > 2 are contained in those of k = 2

w.p.1, it follows immediately that these bounds are also disjoint for k > 2. It follows that

if the population of Player 1 agents are at least Level-2 rational, any θ with θ1 6= θ10 will

produce Level-2 bounds that are violated with positive probability. Thus, no such θ can

be observationally equivalent to one that has θ1 = θ10 and consequently, θ10 is identified.

Naturally, if the same conditions of Theorem 2 hold when we exchange the subscripts “1”

and “2”, then θ20 will be identified. �
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Notes

1This is important since there is theoretical work that challenges the multiplicity issues that arise under

rationalizability. For example, Yildiz and Weinstein (2007) show that for any rationalizable set of strategies

in a given game, there is a local disturbance of that game where these are the unique rationalizable strategies.

This ambiguity about what is the exact game that is being played is exactly the reason why it is important

to study the identified features of a model in the presence of multiplicity.
2The model of demand and supply uses equilibrium to equate the quantity demanded with quantity

supplied thus obtaining the classic simultaneous equation model. Other literatures in econometrics, like job

search models and hedonic equilibrium models explicitly use equilibrium as a “moment condition.”
3There might be ways to obtain sharper inference in these classes of games. This was pointed out to us

by Francesca Molinari.
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